logo search
12

3.1.1. Модели детерминированного факторного анализа.

Детерминированный факторный анализ представляет собой методику исследования влияния факторов, связь которых с результативным показателем носит функциональный характер, т.е. может быть выражен математической зависимостью. Детерминированные модели могут быть разного типа: аддитивные, мультипликативные, кратные, смешанные.

Аддитивные модели.

Аддитивные модели представляют собой алгебраическую сумму показателей и имеют следующую математическую интерпретацию:

В качестве примера можно привести балансовую модель товарного обеспечения:

где Np – общий объём реализации;

Nзап.1 – запасы товара на начало периода;

Nn – объём поступления;

Nвыб – прочее выбытие товаров;

Nзап.2 – запасы товаров на конец анализируемого периода.

Мультипликативная модель.

Мультипликативная модель представляет собой произведение факторов.

Примером мультипликативной модели является двухфакторная модель объёма реализации:

где Ч – среднесписочная численность работников;

В – выработка на одного работника.

2.1.3 Кратные модели

Кратные модели представляют собой отношение факторов и имеют вид:

где Z – совокупный показатель.

Например:

где – срок оборачиваемости товаров (в днях);

- средний запас товаров;

nр – однодневный объём реализации.

Смешанные модели.

Смешанные модели представляют собой комбинацию перечисленных моделей. Примером смешанной модели является формула расчёта интегрального показателя рентабельности

где Rк – рентабельность капитала;

Rnp – рентабельность продаж;

Fe – фондоёмкость основных средств;

Eз – коэффициент закрепления оборотных средств.

Логарифмический способ.

Логарифмический способ применим к кратным и мультипликативным моделям. Он основан на логарифмировании отклонения отчётного и базисного значений результативного признака, равного отношению соответствующих произведений факторов, так как изменение показателей может быть оценено с помощью как абсолютных, так и относительных показателей.

Способ долевого участия.

Способ долевого участия. Этот способ заключается в определении доли каждого фактора в общей сумме их приростов, которая затем умножается на общий прирост совокупного показателя. Этот метод применяется к аддитивным моделям и чаще всего для оценки влияния факторов второго или третьего порядков.

Для примера рассмотрим модель зависимости фонда заработной платы от средней заработной платы и численности персонала.

где ФЗ – фонд заработной платы;

ЗП – средняя заработная плата;

Ч - среднесписочная численность.

В свою очередь средняя заработная плата равна сумме средних выплат по тарифным ставкам, доплат, надбавок (ДН) и дополнительной заработной платы (ДЗ).

Модель примет вид:

Пользуясь способом разниц, рассчитаем влияние средней заработной платы и численности персонала на изменение фонда заработной платы по данным таблицы .

Итого: 68400 руб.

Данные для расчёта

Показатель

Базисный период

Отчётный период

Отклонения

Фонд заработной платы, руб.

в том числе

по тарифным ставкам

доплаты, надбавки

дополнительная зарплата

240000

172000

44000

24000

308000

189000

81000

38000

+68000

+17000

+37000

14000

Среднесписочная численность, человек

15

16

+1

Среднегодовая заработная плата, руб.

том числе

тарифные ставки (ТС)

доплаты, надбавки (ДН)

дополнительная заработная плата (ДЗ)

16000

11467

2933

1600

19250

11813

5062

2375

+3250

+346

+2129

+775

Для определения влияния каждого вида выплат на изменение фонда заработной платы рассчитаем долю (D) влияния каждого вида выплат на среднюю заработную плату:

Влияние каждого вида выплат на фонд заработной платы составит:

Итого: 52000 руб.

Сведём полученные результаты в таблицу.

Влияние факторов на фонд заработной платы

Фактор

Размер влияния, руб.

Доля влияния на фонд заработной платы, %

Доля влияния на среднюю заработную плату, %

Среднесписочная численность

16000

23,5

Средняя заработная плата,

В том числе:

по тарифным ставкам

выплаты, надбавки

Дополнительная заработная плата

52000

5538

34060

12402

76,5

10,65

65,5

23,85

Итого

68000

100

100

Проведённый расчёт показывает, что увеличение фонда заработной платы на 23,5% вызвано ростом среднесписочной численности персонала и на 76,5% - изменением средней заработной платы.

Индексный метод.

Индексный метод основан на построении факторных (агрегированных) индексов. Применение агрегированных индексов означает последовательное элиминирование влияния отдельных факторов на совокупный показатель. Преимущество индексного метода заключается в том, что он позволяет произвести «разложение» по факторам не только абсолютное изменение показателя, но и относительное, что особенно важно при изучении факторных динамических моделей.

Так, индекс изменения выпуска продукции можно выразить через произведение индексов численности и выработки:

С помощью индексного метода можно определить влияние факторов, в том числе структурных сдвигов, на абсолютное отклонение результативного показателя.

Индексный метод целесообразно применять в том случае, когда каждый фактор является сложным (совокупным) показателем. Например, численность персонала предприятия представляет собой соотношение численности отдельных категорий работников или рабочих различных разрядов. Изменение объёма выпуска продукции происходит не только под влиянием численности и выработки, но и структурных сдвигов в составе персонала.

Интегральный способ.

Интегральный способ позволяет достичь полного разложения результативного показателя по факторам и носит универсальный характер, т.е. применим к мультипликативным, кратным и смешанным моделям.

Операция вычисления определённого интеграла по заданной подынтегральной функции и заданному интервалу интегрирования выполняется на ПЭВМ.

Метод цепных подстановок.

Метод цепных подстановок заключается в определении ряда промежуточных значений результативного показателя путем последовательной замены базисных значений факторов на отчетные. Данный способ основан на элиминировании. Элиминировать — значит устранить, исключить воздействие всех факторов на величину результативного показателя, кроме одного. Предполагается, что все факторы изменяются независимо друг от друга, т.е. сначала изменяется один фактор, а все остальные остаются без изменения, потом изменяются два при неизменности остальных и т.д.

В общем виде применение способа цепных постановок можно описать следующим образом:

Преимущества данного способа: универсальность применения; простота расчетов.

Недостаток метода состоит в том, что, в зависимости от выбранного порядка замены факторов, результаты факторного разложения имеют разные значения. Это связано с тем, что в результате применения этого метода образуется некий неразложимый остаток, который прибавляется к величине влияния последнего фактора. На практике точностью оценки факторов пренебрегают, выдвигая на первый план относительную значимость влияния того или иного фактора. Однако существуют определенные правила, определяющие последовательность подстановки:

- при наличии в факторной модели количественных и качественных показателей в первую очередь рассматривается изменение количественных факторов;

если модель представлена несколькими количественными и качественными показателями, то в первую очередь определяется влияние факторов первого порядка, затем второго и т.д.

Под количественным факторами при анализе понимают те, которые выражают количественную определенность явлений и могут быть получены путем непосредственного учета (количество рабочих, станков, сырья и т.д.).

Качественные факторы определяют внутренние качества, признаки и особенности изучаемых явлений (производительность труда, качество продукции, средняя продолжительность рабочего дня и т.д.).

Метод абсолютных разниц.

Метод абсолютных разниц является модификацией способа цепной подстановки. Изменение результативного показателя за счет каждого фактора определяется как произведение абсолютного прироста исследуемого фактора на базисную величину факторов, которые находятся справа от него и отчетную величину факторов, расположенных слева от него в модели.

Метод относительных разниц.

Метод относительных разниц также является одной из модификаций способа цепной подстановки. Применяется для измерения влияния факторов на прирост результативного показателя в мультипликативных моделях. Он используется в случаях, когда исходные данные содержат определенные ранее относительные отклонения факторных показателей в процентах.

Для мультипликативных моделей типа у = а. в . с методика анализа следующая:

находят относительное отклонение каждого факторного показателя:

определяют отклонение результативного показателя у за счет каждого фактора: