20. Какова цель дисперсионного анализа? Запишите модель однофакторного дисперсионного анализа.
Дисперсионный анализ
Дисперсионный анализ применяют для изучения влияния качественных признаков на количественную переменную. Например, пусть имеются k выборок результатов измерений количественного показателя качества единиц продукции, выпущенных на k станках, т.е. набор чисел (x1(j), x2(j), … , xn(j)), где j – номер станка, j = 1, 2, …, k, а n – объем выборки. В распространенной постановке дисперсионного анализа предполагают, что результаты измерений независимы и в каждой выборке имеют нормальное распределение N(m(j), σ2) с одной и той же дисперсией. Хорошо разработаны и непараметрические постановки [19].
Проверка однородности качества продукции, т.е. отсутствия влияния номера станка на качество продукции, сводится к проверке гипотезы
H0: m(1) = m(2) = … = m(k).
В дисперсионном анализе разработаны методы проверки подобных гипотез. Теория дисперсионного анализа и расчетные формулы рассмотрены в специальной литературе [20].
Гипотезу Н0 проверяют против альтернативной гипотезы Н1, согласно которой хотя бы одно из указанных равенств не выполнено. Проверка этой гипотезы основана на следующем «разложении дисперсий», указанном Р.А.Фишером:
(7)
где s2 – выборочная дисперсия в объединенной выборке, т.е.
Далее, s2(j) – выборочная дисперсия в j-ой группе,
Таким образом, первое слагаемое в правой части формулы (7) отражает внутригрупповую дисперсию. Наконец, - межгрупповая дисперсия,
Область прикладной статистики, связанную с разложениями дисперсии типа формулы (7), называют дисперсионным анализом. В качестве примера задачи дисперсионного анализа рассмотрим проверку приведенной выше гипотезы Н0 в предположении, что результаты измерений независимы и в каждой выборке имеют нормальное распределение N(m(j), σ2) с одной и той же дисперсией. При справедливости Н0 первое слагаемое в правой части формулы (7), деленное на σ2, имеет распределение хи-квадрат с k(n-1) степенями свободы, а второе слагаемое, деленное на σ2, также имеет распределение хи-квадрат, но с (k-1) степенями свободы, причем первое и второе слагаемые независимы как случайные величины. Поэтому случайная величина
имеет распределение Фишера с (k-1) степенями свободы числителя и k(n-1) степенями свободы знаменателя. Гипотеза Н0 принимается, если F < F1-α, и отвергается в противном случае, где F1-α – квантиль порядка 1-α распределения Фишера с указанными числами степеней свободы. Такой выбор критической области определяется тем, что при Н1 величина F безгранично увеличивается при росте объема выборок n. Значения F1-α берут из соответствующих таблиц [8].
Разработаны непараметрические методы решения классических задач дисперсионного анализа, в частности, проверки гипотезы Н0.
Однофакторная дисперсионная модель имеет вид:
xij = м + Fj + еij, (1)
где хij - значение исследуемой переменой, полученной на i-м уровне фактора (i=1,2,...,т) c j-м порядковым номером (j=1,2,...,n);
Fi - эффект, обусловленный влиянием i-го уровня фактора;
еij - случайная компонента, или возмущение, вызванное влиянием неконтролируемых факторов, т.е. вариацией переменой внутри отдельного уровня.
Основные предпосылки дисперсионного анализа:
- математическое ожидание возмущения еij равно нулю для любых i, т.е.
M(еij) = 0, (2)
- возмущения еij взаимно независимы;
- дисперсия переменной xij (или возмущения еij) постоянна для любых i, j, т.е.
D(еij) = у2, (3)
- переменная xij (или возмущение еij) имеет нормальный закон распределения N(0;у2).
Влияние уровней фактора может быть как фиксированным или систематическим (модель I), так и случайным (модель II).
Пусть, например, необходимо выяснить, имеются ли сущест-венные различия между партиями изделий по некоторому показа-телю качества, т.е. проверить влияние на качество одного фактора - партии изделий. Если включить в исследование все партии сырья, то влияние уровня такого фактора систематическое (модель I), а полученные выводы применимы только к тем отдельным парти-ям, которые привлекались при исследовании. Если же включить только отобранную случайно часть партий, то влияние фактора случайное (модель II). В многофакторных комплексах возможна смешанная модель III, в которой одни факторы имеют случайные уровни, а другие - фиксированные.
- Контрольные вопросы по курсу «Математическая статистика»
- Что называют дискретным вариационным рядом? Интервальным вариационным рядом? Что называют частостями вариационного ряда? Что называют накопленной частотой и накопленной частостью?
- Пример:
- 2. Что называют полигоном вариационного ряда? Что называют гистограммой частот (частостей) вариационного ряда? Что называют кумулятой вариационного ряда?
- Медиана
- Коэффициент вариации
- Дайте определения начальных и центральных моментов вариационного ряда. Дайте определение коэффициента асимметрии вариационного ряда. Дайте определение эксцесса вариационного ряда.
- Что понимается под генеральной совокупностью? Что понимается под случайной выборкой из генеральной совокупности?
- 6. Каковы основные задачи математической статистики?
- 7. Дайте определение выборочной функции распределения. Дайте определение выборочной средней арифметической. Дайте определение выборочной дисперсии.
- 8. Дайте определение выборочных начальных и центральных моментов.
- Дайте определение статистического ряда выборки.
- 10. Дайте определение эмпирической функции распределения. Дайте определение эмпирической плотности распределения.
- 20. Какова цель дисперсионного анализа? Запишите модель однофакторного дисперсионного анализа.
- 21. Что понимают под уровнем фактора? (ответ в Вопросе 22)
- 22. Как ставится основная гипотеза в случае однофакторного дисперсионного анализа?
- 23. Что такое вектор входных переменных (факторов), вектор выходных переменных (откликов)?
- 24. Что называют корреляционным полем, корреляционной таблицей?
- 26. Какую функцию называют функцией регрессии? Какие переменные называют входными (факторами), выходными (откликами)? Какую регрессионную модель называют линейной?
- 27. Сформулируйте исходные предположения метода наименьших квадратов.
- В чем состоит анализ регрессионной модели?
- 29. Какую статистику используют для проверки значимости модели регрессии?
- 30. Какую линейную регрессионную модель называют адекватной?