logo
ВОПРОСЫ контр матстат

20. Какова цель дисперсионного анализа? Запишите модель однофакторного дисперсионного анализа.

Дисперсионный анализ

Дисперсионный анализ применяют для изучения влияния качественных признаков на количественную переменную. Например, пусть имеются k выборок результатов измерений количественного показателя качества единиц продукции, выпущенных на k станках, т.е. набор чисел (x1(j), x2(j), … , xn(j)), где j – номер станка, j = 1, 2, …, k, а n – объем выборки. В распространенной постановке дисперсионного анализа предполагают, что результаты измерений независимы и в каждой выборке имеют нормальное распределение N(m(j), σ2) с одной и той же дисперсией. Хорошо разработаны и непараметрические постановки [19].

Проверка однородности качества продукции, т.е. отсутствия влияния номера станка на качество продукции, сводится к проверке гипотезы

H0: m(1) = m(2) = … = m(k).

В дисперсионном анализе разработаны методы проверки подобных гипотез. Теория дисперсионного анализа и расчетные формулы рассмотрены в специальной литературе [20].

Гипотезу Н0 проверяют против альтернативной гипотезы Н1, согласно которой хотя бы одно из указанных равенств не выполнено. Проверка этой гипотезы основана на следующем «разложении дисперсий», указанном Р.А.Фишером:

   (7)

где s2 – выборочная дисперсия в объединенной выборке, т.е.

Далее, s2(j) – выборочная дисперсия в j-ой группе,

Таким образом, первое слагаемое в правой части формулы (7) отражает внутригрупповую дисперсию. Наконец,  - межгрупповая дисперсия,

Область прикладной статистики, связанную с разложениями дисперсии типа формулы (7), называют дисперсионным анализом. В качестве примера задачи дисперсионного анализа рассмотрим проверку приведенной выше гипотезы Н0 в предположении, что результаты измерений независимы и в каждой выборке имеют нормальное распределение N(m(j), σ2) с одной и той же дисперсией. При справедливости Н0 первое слагаемое в правой части формулы (7), деленное на σ2, имеет распределение хи-квадрат с k(n-1) степенями свободы, а второе слагаемое, деленное на σ2, также имеет распределение хи-квадрат, но с (k-1) степенями свободы, причем первое и второе слагаемые независимы как случайные величины. Поэтому случайная величина

имеет распределение Фишера с (k-1) степенями свободы числителя и k(n-1) степенями свободы знаменателя. Гипотеза Н0 принимается, если F < F1-α, и отвергается в противном случае, где F1-α – квантиль порядка 1-α распределения Фишера с указанными числами степеней свободы.  Такой выбор критической области определяется тем, что при Н1 величина F безгранично увеличивается при росте объема выборок n. Значения F1-α берут из соответствующих таблиц [8].

Разработаны непараметрические методы решения классических задач дисперсионного анализа, в частности, проверки гипотезы Н0.

Однофакторная дисперсионная модель имеет вид:

xij = м + Fj + еij, (1)

где хij - значение исследуемой переменой, полученной на i-м уровне фактора (i=1,2,...,т) c j-м порядковым номером (j=1,2,...,n);

Fi - эффект, обусловленный влиянием i-го уровня фактора;

еij - случайная компонента, или возмущение, вызванное влиянием неконтролируемых факторов, т.е. вариацией переменой внутри отдельного уровня.

Основные предпосылки дисперсионного анализа:

- математическое ожидание возмущения еij равно нулю для любых i, т.е.

M(еij) = 0, (2)

- возмущения еij взаимно независимы;

- дисперсия переменной xij (или возмущения еij) постоянна для любых i, j, т.е.

D(еij) = у2, (3)

- переменная xij (или возмущение еij) имеет нормальный закон распределения N(0;у2).

Влияние уровней фактора может быть как фиксированным или систематическим (модель I), так и случайным (модель II).

Пусть, например, необходимо выяснить, имеются ли сущест-венные различия между партиями изделий по некоторому показа-телю качества, т.е. проверить влияние на качество одного фактора - партии изделий. Если включить в исследование все партии сырья, то влияние уровня такого фактора систематическое (модель I), а полученные выводы применимы только к тем отдельным парти-ям, которые привлекались при исследовании. Если же включить только отобранную случайно часть партий, то влияние фактора случайное (модель II). В многофакторных комплексах возможна смешанная модель III, в которой одни факторы имеют случайные уровни, а другие - фиксированные.