27. Сформулируйте исходные предположения метода наименьших квадратов.
Связь зависимой переменной с одной или несколькими независимыми переменными описывается с помощью уравнения регрессии:
= f(x1, x2, ..., xm). |
|
Это уравнение показывает, каково будет в среднем значение y, если переменные x примут конкретные значения.
Если независимая переменная одна, то регрессия называется парной.
Построение уравнения регрессии включает два этапа:
1) определение вида зависимости (этап спецификации);
2) определение коэффициентов регрессии (этап идентификации).
Предположим, на этапе спецификации установлено, что между величинами x и y существует линейная зависимость. Реальные значения y будут отличаться от этой теоретической зависимости.
В общем случае линейное уравнение связи двух переменных, учитывающее случайные отклонения, можно представить в виде:
y = + x + , | (6.1) |
где – отклонение от теоретически предполагаемого значения;
и - неизвестные параметры (коэффициенты регрессии).
В уравнении (6.1) можно выделить две части:
систематическую, = + x, где характеризует некоторое среднее значение y для данного значения x;
случайную ( ).
Коэффициенты и описывают вид зависимости для генеральной совокупности. Так как при выполнении подобных исследований всегда имеют дело с выборочной совокупностью, то истинные значения параметров и являются неизвестными, и мы можем говорить лишь об их оценках. Обозначим эти оценки, соответственно, а и b, тогда уравнение регрессии с оцененными параметрами будет иметь вид:
i = a + bxi, | (6.2) |
где n - объем выборки.
Обозначим через ei отклонение реального значения отклика yi от теоретически рассчитанного по уравнению i.
Параметры a и b уравнения регрессии чаще всего оцениваются с помощью метода наименьших квадратов (МНК).
Суть его состоит в том, чтобы зная положение точек на плоскости XY, так провести линию регрессии, чтобы сумма квадратов отклонений этих точек от проведенной прямой вдоль оси OY была минимальной.
Математически критерий оценки параметров линейной парной регрессии записывается так:
Q = = = → min. |
|
Условие существования экстремума функции – равенство нулю производной:
| = - 2 (yi - a - bxi) = 0, = - 2 (yi - a - bxi)xi = 0. |
Раскрыв скобки и выполнив преобразования, получим систему из двух уравнений с двумя неизвестными:
|
|
Разделив первое уравнение на n, получим:
a + b = , |
|
т.е. метод наименьших квадратов дает прямую, проходящую через точку ( , ).
Решая систему, получим расчетные формулы для нахождения коэффициентов уравнения регрессии:
a = - b . | (6.3) |
- Контрольные вопросы по курсу «Математическая статистика»
- Что называют дискретным вариационным рядом? Интервальным вариационным рядом? Что называют частостями вариационного ряда? Что называют накопленной частотой и накопленной частостью?
- Пример:
- 2. Что называют полигоном вариационного ряда? Что называют гистограммой частот (частостей) вариационного ряда? Что называют кумулятой вариационного ряда?
- Медиана
- Коэффициент вариации
- Дайте определения начальных и центральных моментов вариационного ряда. Дайте определение коэффициента асимметрии вариационного ряда. Дайте определение эксцесса вариационного ряда.
- Что понимается под генеральной совокупностью? Что понимается под случайной выборкой из генеральной совокупности?
- 6. Каковы основные задачи математической статистики?
- 7. Дайте определение выборочной функции распределения. Дайте определение выборочной средней арифметической. Дайте определение выборочной дисперсии.
- 8. Дайте определение выборочных начальных и центральных моментов.
- Дайте определение статистического ряда выборки.
- 10. Дайте определение эмпирической функции распределения. Дайте определение эмпирической плотности распределения.
- 20. Какова цель дисперсионного анализа? Запишите модель однофакторного дисперсионного анализа.
- 21. Что понимают под уровнем фактора? (ответ в Вопросе 22)
- 22. Как ставится основная гипотеза в случае однофакторного дисперсионного анализа?
- 23. Что такое вектор входных переменных (факторов), вектор выходных переменных (откликов)?
- 24. Что называют корреляционным полем, корреляционной таблицей?
- 26. Какую функцию называют функцией регрессии? Какие переменные называют входными (факторами), выходными (откликами)? Какую регрессионную модель называют линейной?
- 27. Сформулируйте исходные предположения метода наименьших квадратов.
- В чем состоит анализ регрессионной модели?
- 29. Какую статистику используют для проверки значимости модели регрессии?
- 30. Какую линейную регрессионную модель называют адекватной?