logo search
РГЗ по Брылеву

Метод временных рядов. Задачи анализа временных рядов. Первоначальная обработка временных рядов

Основные задачи анализа временных рядов. Базисная цель статистического анализа временного ряда заключается в том, чтобы по имеющейся траектории этого ряда:

  1. определить, какие из неслучайных функций присутствуют в разложении (1), т.е. определить значения индикаторов i;

  2. построить «хорошие» оценки для тех неслучайных функций, которые присутствуют в разложении (1);

  3. подобрать модель, адекватно описывающую поведение случайных остатков t, и статистически оценить параметры этой модели.

Успешное решение перечисленных задач, обусловленных базовой целью статистического анализа временного ряда, является основой для достижения конечных прикладных целей исследования и, в первую очередь, для решения задачи кратко- и среднесрочного прогноза значений временного ряда. Приведем кратко основные элементы эконометрического анализа временных рядов.

Временные ряды отражают тенденцию изменения параметров системы во времени, поэтому входным параметром х является момент времени.

Выходной параметр y называется уровнем ряда. В случае отсутствия ярко выраженных изменений в течение времени, общая тенденция сохраняется. Ряд можно описать уравнением вида

YT = F (t) + ET ,

где

F (t) – детерминированная функция времени.

ET – случайная величина

Во временных рядах проводится операция анализа и сглаживания тренда, который отражает влияние некоторых факторов. Для построения тренда применяется МНК-критерий.

Существуют моментальные и интервальные ряды. В моментальных рядах отражаются абсолютные величины, по состоянию на определенный момент времени, а в интервальных – относительные величины (показатель за год, месяц, и т.д.). Исследование данных при помощи рядов позволяет во многих случаях более четко представить детерминированную функцию. При этом рассчитываются базисные и цепные показатели (прирост, коэффициент роста, коэффициент роста, темп роста, темп прироста, и др.). Под базисными показателями понимают, показатели, которые соотносятся к начальному уровню ряда. Цепные показатели относятся к предыдущему уровню.

Прогноз явлений по временным рядам состоит из двух этапов:

Обе проблемы связаны с анализом результатов парных экспериментов. В отличие от аппроксимации и интерполяции анализ временных рядов включает в себя методы оценки случайных компонент. Поэтому прогнозирование при помощи временных рядов является более точным.

Исследование рядов имеет большое значение и для технических, и для экономических систем.