Метод аналитического выравнивания.
Более совершенным приемом изучения общей тенденции в рядах динамики является аналитическое выравнивание. При изучении общей тенденции методом аналитического выравнивания исходят из того, что изменения уровней ряда динамики могут быть с той или иной степенью точности приближения выражены определенными математическими функциями. Вид уравнения определяется характером динамики развития конкретного явления. Логический анализ при выборе вида уравнения может быть основан на рассчитанных показателях динамики, а именно:
если относительно стабильны абсолютные приросты (первые разности уровней приблизительно равны), сглаживание может быть выполнено по прямой;
если абсолютные приросты равномерно увеличиваются (вторые разности уровней приблизительно равны), можно принять параболу второго порядка;
при ускоренно возрастающих или замедляющихся абсолютных приростах - параболу третьего порядка;
при относительно стабильных темпах роста- показательную функцию.
Для аналитического выравнивания наиболее часто используются следующие виды трендовых моделей: прямая (линейная), парабола второго порядка, показательная (логарифмическая) кривая, гиперболическая.
Цель аналитического выравнивания - определение аналитической или графической зависимости. На практике по имеющемуся временному ряду задают вид и находят параметры функции, а затем анализируют поведение отклонений от тенденции. Чаще всего при выравнивании используются следующие зависимости; линейная, параболическая и экспоненциальная.
После выяснения характера кривой развития необходимо определить ее параметры, что можно сделать различными методами:
решением системы уравнений по известным уровням ряда динамики;
методом средних значений (линейных отклонений), который заключается в следующем: ряд расчленяется на две примерно равные части, и вводятся преобразования, чтобы сумма выровненных значений в каждой части совпала с суммой фактических значений, например, в случае выравнивания прямой линии ;
выравниванием ряда динамики с помощью метода конечных разностей;
методом наименьших квадратов: это некоторый прием получения оценки детерминированной компоненты , характеризующих тренд или ряд изучаемого явления.
Во многих случаях моделирование рядов динамики с помощью полиномов или экспоненциальной функции не дает удовлетворительных результатов, так как в рядах динамики содержатся заметные периодические колебания вокруг общей тенденции. В таких случаях следует использовать гармонический анализ.
Для менеджера предпочтительно применение именно этого метода, поскольку он определяет закон, по которому можно достаточно точно спрогнозировать значения уровней ряда. Однако его применение требует достаточных знаний в области высшей математики и математической статистики.
- Метод временных рядов. Задачи анализа временных рядов. Первоначальная обработка временных рядов
- Методы нахождения параметров уравнения тренда. Метод наименьших квадратов
- Метод аналитического выравнивания.
- Экстраполяция тенденции как метод прогнозирования
- Метод среднего абсолютного прироста.
- Практическая часть.
- Решение предоставлено в табл.