Виды средних величин, условия применения в экономическом анализе Условия применения средних величин в анализе
Как уже говорилось выше обязательным условием расчета средних величин для исследуемой совокупности является ее однородность. Действительно, допустим, что отдельные элементы совокупности, вследствие подверженности влиянию некоторого случайного фактора, имеют слишком большие (или слишком малые) величины изучаемого признака, существенно отличающиеся от остальных. Такие элементы повлияют на размер средней для данной совокупности, поэтому средняя не будет выражать наиболее характерную для совокупности величину признака.
Если исследуемое явление не является однородным, то его разбивают на группы, содержащие только однородные элементы. Для такого явления рассчитываются сначала средние по группам, которые называются групповые средние, - они будут выражать наиболее типичную величину явления в каждой группе. Затем рассчитывается для всех элементов общая средняя величина, характеризующая явление в целом, - она рассчитывается как средняя из групповых средних, взвешенных по числу элементов совокупности, включенных в каждую группу. На практике, однако, безусловное выполнение данного условия повлекло бы за собой ограничение возможностей статистического анализа общественных процессов. Поэтому, часто средние величины рассчитываются по неоднородным явлениям. Например, при расчете величины средней заработной платы по Тюменской области, когда совместно анализируется заработная плата труда в автономных округах и в южных районах Тюменской области, а затем полученный средний уровень заработной платы труда сопоставляется с соседними сибирскими регионами.
Еще одним важным условием применения средних величин в анализе является достаточное количество единиц в совокупности, по которой рассчитывается среднее значение признака. Достаточность анализируемых единиц обеспечивается корректным определением границ исследуемой совокупности, т.е. закладывается еще на начальном этапе статистического исследования. Данное условие становится решающим при применении выборочного наблюдения, когда необходимо обеспечить репрезентативность выборки.
Определение максимального и минимального значения признака в изучаемой совокупности также является условием применения средней величины в анализе. В случае больших отклонений между крайними значениями и средней, необходимо проверить принадлежность экстремумов к исследуемой совокупности. Если сильная изменчивость признака вызвана случайными, кратковременными факторами, то, возможно, крайние значения не характерны для совокупности. Следовательно, их следует исключить из анализа, т.к. они оказывают влияние на размер средней величины.
Виды средних
При использовании средних величин в статистических исследованиях необходимо четко представлять характер изучаемой статистической совокупности и цели данного статистического исследования. Как видели в предыдущих лекциях, в практике статистической обработки материалов правильно статистически организованного массового наблюдения возникают различные задачи, имеются особенности и в самих изучаемых явлениях, изучаемые признаками по отдельным единицам совокупности могут оцениваться (выражаться) в различных единицах измерениях. Как указывалось в первом вопросе данной темы, свойство средней обнаруживать (улавливать) общую тенденцию изменения анализируемых признаков проявляется только в тех случаях, если она рассчитана на основе массовых данных. Однако это свое основное свойство – быть обобщающей характеристикой – средняя выполняет в том случае, если она будет получена из качественно однородной совокупности, т.е. из индивидуальных величин одного и того же типа. Поэтому прежде чем вычислять среднюю, необходимо убедиться, что в совокупности единиц нет таких, которые относятся к другим типам и видам явлений. Отсюда основным условием правильного применения средних величин в статистике является предварительная группировка изучаемых единиц совокупности. Если в изучаемом явлении выделены характерные типы и однородные группы единиц, тогда возможна их характеристика с помощью средних величин. В результате группировки вся масса статистических данных распространяется по группам и для каждой группы характерен свой средний размер признаков, отличный от размера аналогичных признаков в других типовых группах. Исходя из сущности изучаемого явления и целей статистического исследования определяется ограничиться ли в данном исследовании “частными” средними для каждой отдельной группы входящей в изучаемую совокупность, или можно воспользоваться и самыми «общими» средними для всей совокупности.
Сочетание общих с групповыми средними позволяет вскрыть процессы нарождающегося нового качества.Например, распределение населения по доходу позволяет выявить формирование новых социальных групп. Законы диалектики указывают на то, что носителем нового качества сначала являются единичные факты, а затем количество этих единиц совокупности увеличивается, и новое становится массовым, типичным. Из рассмотренных примеров видим, что средняя величина является отражением значений изучаемого признака, и, следовательно, измеряется в той же размерности, что и этот признак. Однако в статистических исследованиях приходится изучать уровни распределения непосредственно не сравниваемых между собой признаков (например, средняя численность населения по отношению к территории или средняя плотность населения.) В зависимости от того, какой именно фактор элиминизируется, определяется и содержание средней. Из указанного можно сделать основной вывод, что в статистике используются различные средние. В зависимости от характера первичных данных, области применения и способа расчета в статистике различают следующие основные виды средних: средняя арифметическая, средняя гармоническая, средняя геометрическая и средняя квадратическая. Где последняя формула выводится с помощью высшей математики с устранением так называемой “неопределенности”. Величины средних в этом примере сильно отличаются. В общем виде соотношение между этими средними такое.
В статистике правильную характеристику изучаемой совокупности по варьирующему признаку в каждом отдельном случае дает только вполне определенный вид средней. Вопрос о том, какой вид средней необходимо применить в отдельном случае, разрешается путем конкретного анализа изучаемой совокупности, определяется содержанием этой совокупности (характером изучаемых признаков), а также из принципа осмысленности результатов при суммировании или при взвешивании. Только тогда средняя будет применяться правильно, когда средняя величина имеет реальный смысл. Эти и другие принципы в статистике выражаются теорией средних. Так, например, средняя арифметическая (наиболее часто применяемая средняя) и средняя гармоническая используются для характеристики среднего значения варьирующего признака у изучаемой совокупности. Средняя геометрическая применяется только при исчислении средних темпов динамики, а средняя квадратическая только при исчислении показателей вариации. При расчете любых степенных средних используются следующие понятия и обозначения: а) признак, по которому находится средняя, называется осредняемым признаком и обозначается ; б) величина осредняемого признака у каждой единицы совокупности называется индивидуальным значением признака или вариантой, и обозначается как х1, х2,…хn; в) повторяемость индивидуальных значений признака называется частотой и обозначается буквой f. В зависимости от объема используемых при расчете средних статистического материала, как видели выше, можно говорить о групповых средних и общих средних. Кроме степенных средних, в статистике применяют относительные характеристики распределения варьирующего признака: моду (наиболее часто встречающаяся варианта) и медиану (серединная варианта). Мода и медиана в статистической литературе иногда называются структурными (непараметрическими) средними.
- Предмет статистической науки. Метод статистики
- Стадии статистического исследования
- Основные формы, виды и способы статистического наблюдения
- Метод статистических группировок, его значение, виды группировок
- Статистические таблицы, их виды и основные правила построения
- Основные правила составления и анализа статистических таблиц
- Статистические таблицы, их виды и основные правила построения
- Основные правила составления и анализа статистических таблиц
- Статистические ряды распределения. Их виды и графическое изображение рядов распределения
- Статистические ряды распределения
- 2. Графическое изображение рядов распределения
- Абсолютные и относительные величины. Их виды
- Виды средних величин, условия применения в экономическом анализе Условия применения средних величин в анализе
- Структурные средние величины в статистике. Практика х применения в экономических исследованиях
- Статистическое изучение вариации в рядах распределения
- Статистическое изучение рядов динамики. Вычисление и анализ статистических показателей динамики
- Общая тенденция (тренд) ряда динамики. Методы выявления тренда
- Индексный метод анализа, его значение. Агрегатная форма индексов
- Классификация индексов
- Индексный метод изучения динамики среднего уровня
- Сущность, значение и виды выборочного наблюдения
- Статистическое изучение взаимосвязи социально-экономических явлений. Корреляционный анализ. Показатели тесноты связи
- Количественные критерии оценки тесноты связи
- Статистические методы прогнозирования в рядах динамики, условие краткосрочного прогноза
- Показатели тесноты связи между двумя качественными признаками
- Понятие о статистических показателях, их значение основные функции в экономико-статистическом анализе Виды и значение обобщающих показателей
- 2. Абсолютные величины, их основные виды
- 3. Относительные величины, их значение и основные виды
- Показатели тесноты связи между количественными признаками
- Теоретические основы статистики. Основные категории статистики
- 1.2. Основные категории статистики
- Ошибки выборочного наблюдения
- Статистические методы изучения динамики явлений
- Статистические показатели численности и состава населения
- 2. Состав населения
- Показатели естественного движения населения
- Коэффициент эффективности воспроизводства населения
- Статистика оплаты труда. Заработная плата реальная и номинальная
- 2. Среднемесячная и среднечасовая оплата труда. Анализ динамики заработной платы
- 3. Номинальная и реальная заработная плата. Анализ дифференциации заработной платы
- Показатели естественного движения населения
- Коэффициент эффективности воспроизводства населения
- Статистика труда. Показатели уровня и динамики занятости и безработицы
- Показатели движения численности работников на предприятиях и фирмах
- Статистика национального богатства. Показатели объема и структуры национального богатства
- Индексный метод изучения динамики оплаты труда
- Предмет, метод, задачи и основные направления совершенствования социально-экономической статистики
- 3. Методы, применяемые в социально-экономической статистике
- 4. Задачи социально-экономической статистики в условиях рыночной экономики
- Статистика основных фондов. Понятие классификация основных фондов. Виды их оценки
- Сущность основных фондов
- Классификация основных фондов
- Материальные и нематериальные основные фонды
- Материальные основные фонды включают:
- Нематериальные основные фонды (нематериальные произведенные активы):
- Статистические показатели состояния, движения и использования основного капитала
- 1. Понятие, состав и оценка основного капитала
- 2. Износ и амортизация основных средств
- Статистические показатели наличия и использования оборотных средств
- Статистические показатели использования рабочего времени на предприятии
- Баланс основных фондов
- Методы измерения производительности труда
- Статистические показатели производительности труда
- 1. Методологические основы статистического изучения производительности труда
- 2. Факторы производительности труда и их классификация
- 3. Методы измерения уровня и динамики производительности труда
- Индексы цен, их экономическое содержание. Способы определения суммы экономического эффекта от изменения цен
- Показатели времени в человеко-днях
- Отработано человеко-дней (фактические отработанное время)
- Целодневные простои
- Сумма явок
- Неявки в рабочие дни по причинам:
- Показатели времени в человеко-часах
- Индексы физического объема товарной массы, способы их вычисления, условия жизни населения
- Статистические показатели уровня жизни населения
- Основные причины, вызывающие несопоставимость статистических данных. Методы приведения статистических данных к сопоставимому виду
- Показатели дифференциации доходов населения
- Индекс развития человеческого потенциала, инн-1,инн-2
- Статистические показатели инфляции цен
- Статистические показатели занятости и безработицы