logo search
35 Моделирование тенденции временного ряда

25 Фиктивные переменные во множественной регрессии

при построении уравнения множественной регрессии может оказаться необходимым включение в модель фактора, имеющего 2 и более качественного уровня. Например, это атрибутивные признаки – пол, профессия, образование, климатические условия и т.д. чтобы ввести такие переменные в регрессионную модель им присваиваются цифровые метки, т.е. качественные переменные преобразуются в количественные. Такого вида структурированные переменные называются фиктивные.

Пример, по группе Х м и ж пола изучается линейная зависимость потребления кофе от цены, у- потребление кофе, х – цена.

Y=a+bx; y1=a1+b1x+E1-Mужчины,

y2=a2+b2x+E2-женщины.

Из этих 2 уравнений нужно получить 1 уравнение.

Y=a1z1+a2z2+bx+E Z1= Z2=

В отдельном случае, может оказаться необходимость введения 2 и более фиктивных переменных, тогда модель представляет собой сумму

y=a1z1+a2z2+a2s3+a4s4+bx+E

Фиктивные переменные для оценки сезонных различий потреблений. Фиктивные переменные могут вводиться не только в линейные, но и не в линейные модели, но приводимые к линейным с помощью некоторых преобразований.

21. основные элементы временных рядов

Построить эконометрическую модель можно, используя 2 типа данных:

1.  данные, характеризуют совокупность объектов в определенный момент или период времени.

2.   данные, характеризующие один объект за несколько последовательных моментов или периодов времени.

Модели, построенные по данным первого типа, называются пространственными моделями.

модели, построенные по данным 2 типа, называются моделями временных рядов.

Временной ряд- совокупность значений какого-либо показателя за несколько моментов или периодов времени.

Каждый уровень временного ряда формируется под воздействием большого числа факторов, которые условно можно разделить на 3 группы:

1.  факторы, формирующие тенденцию ряда.

2.  фактора, формирующие циклические колебания ряда.

3.  случайные факторы.

При различных состояниях изучаемого явления этих факторов зависимость уровня ряда от времени может быть различие. Во-первых, большинство временных рядов экономических показателей имеет тенденцию, характеризующую совокупное долговременное воздействие множества факторов на исследуемый показатель. Во-вторых, изучаемый показатель может быть подвержен циклическим колебаниям. Эти колебания могут носить сезонный характер, т.к. экономическая деятельность ряда отраслей экономики зависит от времени года. Некоторое временные ряды не содержат тенденции и циклические компоненты. А их каждый следующий уровень образуется как сумма следующего уровня ряда и некоторого положительной или отрицательной компоненты. В большинстве случаев фактический уровень временного ряда может представлять собой сумму или произведение трендовой, циклической и случайной компонент.

Модель, в которой временной ряд представлен как сумма перечисленных компонент называется аддитивной. Модель, в которой временной ряд представляет собой произведение 3 компонент называется мультипликативной.

Основные компоненты временного ряда.

Тенденция циклическая случайная

Основная задача эконометрического исследования временных рядов- выявление и предание количественного выражения каждой из перечисленных компонент с тем, чтобы использовать полученную информацию для прогнозирования будущих значений ряда.

22

частная корреляция

частные индексы корреляции характеризуют тесноту связи исследуемого признака и одним из факторов при устранении влияния остальных факторов, включенных в модель. Эти показатели представляют собой отношение сокращения остаточной дисперсии за счет включения доп. Факторов. Если рассматриваемая регрессия с числом факторов Р, то возможны коэффициенты корреляции первого, второго и т.д. Р-1 порядков, т.е.

пример: действие влияния Х1 можно оценить при разных условиях независимого действия др. факторов: ryx1x2 при постоянном действии фактора Х2, ryx1x2x3 при постоянном действии факторов Х2 и Х3. формула в общем виде имеет вид: