33 Коэффициент автокорреляции. Их свойства
Автокорреляционная функция - это характеристика сигнала, которая помогает находить повторяющиеся участки сигнала или определять несущую частоту сигнала, скрытую из-за наложений шума и колебаний на других частотах. Автокорреляционная функция часто используется в обработке сигналов и анализе временных рядов.
Неформально автокорреляционная функция - это сходство между значениями сигнала как функция от разницы во времени между ними. Количественно ее можно найти с помощью коэффициента корреляции между уровнями начального временного ряда и уровнями этого ряда, сдвинутыми на несколько шагов по времени.
Определим коэффициент корреляции между рядами уt и yt-1. Формула для расчета коэффициента корреляции можно представить в виде: Эта величина - коэффициент автокорреляции первого порядка, так как он определяет зависимость между соседними уровнями ряда t и t-1
Аналогично определяют коэффициенты автокорреляции второго и более высоких порядков.
Число периодов, по которым определяется коэффициент автокорреляции, называют лаг автокорреляции. С ростом лага число пар значений, по которым рассчитывается коэффициент автокорреляции, уменьшается. Считается что лаг должен определяться отношением n/4 - количество наблюдений деленных на 4.
В обработке сигналов автокорреляционная функция (АКФ) определяется интегралом:
и показывает связь сигнала (функции ) с копией самого себя, смещённого на величину τ.
Свойства коэффициента автокорреляции По коэффициенту автокорреляции судят о наличии линейной тенденции. Для некоторых временных рядов, имеющих сильную нелинейную тенденцию (степенную функцию или экспоненту), коэффициент автокорреляции может быть меньше 0,7.
По знаку коэффициента автокорреляции нельзя делать судить о возрастающем или убывающем направлении связи в ряду.
Коррелограмма
Последовательность коэффициентов автокорреляции уровней первого, второго и других порядков называется автокорреляционной функцией временного ряда. График значений коэффициентов автокорреляции разных порядков называют коррелограммой.
Анализ автокорреляционной функции и коррелограммы позволяет найти лаг, при котором автокорреляция наиболее высокая, а следовательно, и лаг, при котором связь между текущим и предыдущими уровнями временного ряда наиболее тесная. Анализ коэффициентов автокорреляции
Если максимальным оказался коэффициент автокорреляции первого порядка, временной ряд содержит только тенденцию (тренд). Если максимальным оказался коэффициент автокорреляции порядка n, ряд содержит циклические колебания с периодичностью в n моментов времени.
Если ни один из коэффициентов автокорреляции не является значимым (близок к 0), можно сказать, что либо ряд не содержит тенденции и циклических колебаний, либо ряд содержит нелинейную тенденцию, для выявления которой проводят дополнительный анализ.
32
Временно́й ряд (или ряд динамики) — собранный в разные моменты времени статистический материал о значении каких-либо параметров (в простейшем случае одного) исследуемого процесса. Каждая единица статистического материала называется измерением или отсчётом, также допустимо называть его уровнем на указанный с ним момент времени. Во временном ряде каждому отчету должно быть указано время измерения или номер измерения по порядку. Временной ряд существенно отличается от простой выборки данных, так как при анализе учитывается взаимосвязь измерений со временем, а не только статистическое разнообразие и статистические характеристики выборки[1].
Содержание
|
- 35 Моделирование тенденции временного ряда
- 34 Автокорреляция уровней временного ряда. Анализ структуры временного ряда на основании коэффициентов автокорреляции
- 33 Коэффициент автокорреляции. Их свойства
- Анализ временных рядов
- Примеры временных рядов
- 31 Автокорреляция уровней временного ряда и выявление его структуры
- 30 Основные элементы временного ряда
- Метод Гольдфельда-Квандта проверки гипотезы гомоскедастичности
- 27 Гомоскедастичность остатков регрессионной функции. Гетероскедастичность остатков регрессионной функции.
- 25 Фиктивные переменные во множественной регрессии
- 21 Множественная корреляция (multiple correlation)
- Частные уравнения регрессии
- 15 10.2. Отбор факторов при построении множественной регрессии