35 Моделирование тенденции временного ряда
Одним из наиболее распространенных способов моделирования тенденции временного ряда является построение аналитической функции, характеризующей зависимость уровней ряда от времени, или тренда. Этот способ называют аналитическим выравниванием временного ряда.
Пусть имеются следующие фактические уровни ряда:
у1, у2, . . ., уn.
Характер изменения этих уровней, то есть движения динамического ряда, может быть различным. Нашей задачей является нахождение такой простой математической формулы, которая давала бы возможность вычислить теоретические уровни. Основное требование, предъявляемое к этой формуле, состоит в том, что уровни, исчисленные по ней, должны воспроизводить общую тенденцию фактических уровней.
Поскольку зависимость от времени может принимать разные формы, для ее формализации можно использовать различные виды функций. Для построения трендов чаще всего применяются следующие функции:
· линейный тренд: yt = a0 + a1t;
· гипербола: yt =a0 + a1/t;
· экспоненциальный тренд: yt = e a + bt ;
· тренд в форме степенной функции: yt = atb;
· парабола второго и более порядков:
yt = a0 + a1t + a2 t 2 + . . . +ak t k .
Аналитическое выравнивание есть не что иное, как удобный способ описания эмпирических данных.
Общие соображения при выборе типа линии, по которой производится аналитическое выравнивание , могут быть сведены к следующим:
1) Если абсолютные приросты уровней ряда по своей величине колеблются около постоянной величины, то математической функцией, уравнение которой можно принять за основу аналитического выравнивания, следует считать прямую линию:
yt = a0 + a1 t,
где yt считается как у, выровненный по t.
2) Если приросты приростов уровней, то есть ускорения, колеблются около постоянной величины, то за основу аналитического выравнивания, следует принять параболу второго порядка:
yt = a0 + a1 t + a2 t 2 .
Показатели а0, а1 и а2 представляют собой в каждом отдельном случае выравнивания постоянные величины, называемые параметрами: а0 -начальный уровень; а1 - начальная скорость ряда и а2 - ускорение или вторая скорость.
3) Если уровни изменяются с приблизительно постоянным относительным приростом, то выравнивание производится по показательной (экспонентной функции):
yt = a0 a1t.
В этих же целях можно использовать и коэффициенты автокорреляции уровней ряда. Тип тенденции можно определить путём сравнения коэффициентов автокорреляции первого порядка, рассчитанным по исходным и преобразованным уровням ряда. Если временной ряд имеет линейную тенденцию, то его соседние уровни yt и y t -1 тесно коррелируют. В этом случае коэффициент автокорреляции первого порядка уровней исходного ряда должен быть высоким. Если временной ряд содержит нелинейную тенденцию, например, в форме экспоненты, то коэффициент автокорреляции первого порядка по логарифмам уровней исходного ряда будет выше, чем соответствующий коэффициент, рассчитанный по уровням ряда. Чем сильнее выражена нелинейная тенденция в изучаемом временном ряде, тем в большей степени будут различаться значения указанных коэффициентов.
При обработке информации на компьютере выбор вида уравнения тенденции обычно осуществляется экспериментальным методом , то есть путём сравнения величины остаточной дисперсии Dост, рассчитанной при разных моделях. Имеют место отклонения фактических данных от теоретических (у - уt). Величина этих отклонений и лежит в основе расчёта остаточной дисперсии:
(1.3.1)
Чем меньше величина остаточной дисперсии, тем лучше данное уравнение подходит к исходным данным.
- 35 Моделирование тенденции временного ряда
- 34 Автокорреляция уровней временного ряда. Анализ структуры временного ряда на основании коэффициентов автокорреляции
- 33 Коэффициент автокорреляции. Их свойства
- Анализ временных рядов
- Примеры временных рядов
- 31 Автокорреляция уровней временного ряда и выявление его структуры
- 30 Основные элементы временного ряда
- Метод Гольдфельда-Квандта проверки гипотезы гомоскедастичности
- 27 Гомоскедастичность остатков регрессионной функции. Гетероскедастичность остатков регрессионной функции.
- 25 Фиктивные переменные во множественной регрессии
- 21 Множественная корреляция (multiple correlation)
- Частные уравнения регрессии
- 15 10.2. Отбор факторов при построении множественной регрессии