logo search
shpory

8. Абсолютные показатели вариации, способы их вычисления.

Вариация — это различия индивидуальных значений признака у единиц изучаемой совокупности.

Абсолютные показатели вариации включают:

Размах вариации (R)

Размах вариации — это разность между максимальным и минимальным значениями признака

Он показывает пределы, в которых изменяется величина признака в изучаемой совокупности.

Среднее линейное и квадратическое отклонение

Среднее линейное отклонение — это средняя арифметическая из абсолютных отклонений отдельных значений признака от средней.

Среднее линейное отклонение простое:

Среднее линейное отклонение взвешенное применяется для сгруппированных данных:

Среднее квадратическое отклонение

Среднее квадратическое отклонение () равно квадратному корню из среднего квадрата отклонений отдельных значений признака от средней арифметической:

Среднее квадратическое отклонение простое:

Среднее квадратическое отклонение взвешенное применяется для сгруппированных данных:

Среднее квадратическое отклонение, являясь основной абсолютной мерой вариации, используется при определении значений ординат кривой нормального распределения, в расчетах, связанных с организацией выборочного наблюдения и установлением точности выборочных характеристик,

Дисперсия - представляет собой средний квадрат отклонений индивидуальных значений признака от их средней величины.

Дисперсия простая:

Дисперсия взвешенная:

Более удобно вычислять дисперсию по формуле:

которая получается из основной путем несложных преобразований. В этом случае средний квадрат отклонений равен средней из квадратов значений признака минус квадрат средней.

Для несгрупиированных данных:

Для сгруппированных данных:

Вариация альтернативного признака заключается в наличии или отсутствии изучаемого свойства у единиц совокупности. Количественно вариация альтернативного признака выражается двумя значениями:

наличие у единицы изучаемого свойства обозначается единицей (1),

а его отсутствие — нулем (0).

Долю единиц, обладающих изучаемым признаком, обозначают буквой ,

а долю единиц, не обладающих этим признаком — через .

Учитывая, что p + q = 1 (отсюда q = 1 — p), а среднее значение альтернативного признака равно 

,

средний квадрат отклонений

Среднее квадратическое отклонение  равно квадратному корню из среднего квадрата отклонений отдельных значений признака от средней арифметической.