Глава 2. Принятие решений в условиях полной неопределенности
Неопределенность, связанную с отсутствием информации о вероятностях состоянии среды (природы), называют "безнадежной" или "дурной".
В таких случаях для определения наилучших решении используются следующие критерии: максимакса, Вальда, Сэвиджа, Гурвица.[4]
Применение каждого из перечисленных критериев проиллюстрируем на примере матрицы выигрышей (1) или связанной с ней матрицы рисков (2).
Критерий максимакса
С его помощью определяется стратегия, максимизирующая максимальные выигрыши для каждого состояния природы. Это критерий крайнего оптимизма. Наилучшим признается решение, при котором достигается максимальный выигрыш, равный
.
Нетрудно увидеть, что для матрицы А наилучшим решением будет А1, при котором достигается максимальный выигрыш - 9.
Следует отметить, что ситуации, требующие применения такого критерия, в экономике в общем нередки, и пользуются им не только безоглядные оптимисты, но и игроки, поставленные в безвыходное положение, когда они вынуждены руководствоваться принципом "или пан, или пропал".[1]
Максиминный критерий Вальда
С позиций данного критерия природа рассматривается как агрессивно настроенный и сознательно действующий противник типа тех, которые противодействуют в стратегических играх (см. гл.2). Выбирается решение, для которого достигается значение
.
Для платежной матрицы А (1) нетрудно рассчитать:
для первой стратегии (i = 1) ;
для второй стратегии (i=2) ;
для третьей стратегии (i=3) .
Тогда , что соответствует второй стратегии A2 игрока 1.
В соответствии с критерием Вальда из всех самых неудачных результатов выбирается лучший (W = 3). Это перестраховочная позиция крайнего пессимизма, рассчитанная на худший случай. [1]
Такая стратегия приемлема, например, когда игрок не столь заинтересован в крупной удаче, но хочет себя застраховать от неожиданных проигрышей. Выбор такой стратегии определяется отношением игрока к риску.[7]
Критерий минимаксного риска Сэвиджа
Выбор стратегии аналогичен выбору стратегии по принципу Вальда с тем отличием, что игрок руководствуется не матрицей выигрышей А (1), а матрицей рисков R (2):
Для матрицы R (2) нетрудно рассчитать:
для первой стратегии (i=1) ;
для второй стратегии (i=2) ;
для третьей стратегии (i=3) .
Минимально возможный из самых крупных рисков, равный 4, достигается при использовании первой стратегии А1.[7]
Критерий пессимизма-оптимизма Гурвица
Этот критерий при выборе решения рекомендует руководствоваться некоторым средним результатом, характеризующим состояние между крайним пессимизмом и безудержным оптимизмом. Согласно этому критерию стратегия в матрице А выбирается в соответствии со значением
При p = 0 критерий Гурвица совпадает с максимаксным критерием, а при р = 1 - с критерием Вальда. Покажем процедуру применения данного критерия для матрицы А (1) при р = 0,5:
для первой стратегии:
для второй стратегии:
для третьей стратегии:
Тогда , т.е. оптимальной является вторая стратегия А2.[3]
Применительно к матрице рисков R критерий пессимизма-оптимизма Гурвица имеет вид:
При р = 0 выбор стратегии игрока 1 осуществляется по условию наименьшего из всех возможных рисков (); при р = 1 - по критерию минимаксного риска Сэвиджа.
В случае, когда по принятому критерию рекомендуется к использованию несколько стратегий, выбор между ними может делаться по дополнительному критерию, например в расчет могут приниматься средние квадратичные отклонения от средних выигрышей при каждой стратегии. Еще раз подчеркнем, что здесь стандартного подхода нет. Выбор может зависеть от склонности к риску ЛПР.[5]
В заключение приведем результаты применения рассмотренных выше критериев на примере следующей матрицы выигрышей:
Для игрока 1 лучшими являются стратегии:
по критерию Вальда - А3,по критерию Сэвиджа - А2 и А3,по критерию Гурвица (при р = 0,6) - А3;
по критерию максимакса - А4.
Поскольку стратегия А3, фигурирует в качестве оптимальной по трем критериям выбора из четырех испытанных, степень ее надежности можно признать достаточно высокой для того, чтобы рекомендовать эту стратегию к практическому применению.[7]
Таким образом, в случае отсутствия информации о вероятностях состоянии среды теория не дает однозначных и математически строгих рекомендации по выбору критериев принятия решений. Это объясняется в большей мере не слабостью теории, а неопределенностью самой ситуации. Единственный разумный выход в подобных случаях - попытаться получить дополнительную информацию, например, путем проведения исследований или экспериментов. В отсутствие дополнительной информации принимаемые решения теоретически недостаточно обоснованы и в значительной мере субъективны. Хотя применение математических методов в играх с природой не дает абсолютно достоверного результата и последний в определенной степени является субъективным (вследствие произвольности выбора критерия принятия решения), тем не менее создает некоторое упорядочение имеющихся в распоряжении ЛПР данных: задаются множество состояний природы, альтернативные решения, выигрыши и потери при различных сочетаниях состояния "среда - решение". Такое упорядочение представлений о проблеме само по себе способствует повышению качества принимаемых решений.[1]
- Введение
- Глава 1. Понятие игры с природой
- Глава 2. Принятие решений в условиях полной неопределенности
- Глава 3. Принятие решений в условиях риска
- Глава 4. Выбор решений с помощью дерева решений (позиционные игры)
- 4.1 Принятие решений с применением дерева решений
- 4.2 Анализ и решение задач с помощью дерева решений
- 4.3 Ожидаемая ценность точной информации
- Заключение
- Игры с природой (принятие решений в условиях неопределенности)
- 1.Принятие решений в условиях неопределенности
- 25. Принятие решений при условии стохастической неопределенности
- Принятие решений в условиях неопределенности
- Принятие управленческих решений в условиях неопределенности
- 12.Понятие игры с природой. Принятие решений в условиях неопределенности.
- Критерии оптимизации в играх с природой. Принятие решений в условиях неопределенности
- Принятие решений в условиях неопределенности
- Тема 3. Теория игр и принятие решений в условиях неопределенности.
- 18.Понятие игры с природой. Принятие решений в условиях неопределенности.