logo
Принятие решений в условиях неопределенности. Игры с природой

Глава 2. Принятие решений в условиях полной неопределенности

Неопределенность, связанную с отсутствием информации о вероятностях состоянии среды (природы), называют "безнадежной" или "дурной".

В таких случаях для определения наилучших решении используются следующие критерии: максимакса, Вальда, Сэвиджа, Гурвица.[4]

Применение каждого из перечисленных критериев проиллюстрируем на примере матрицы выигрышей (1) или связанной с ней матрицы рисков (2).

Критерий максимакса

С его помощью определяется стратегия, максимизирующая максимальные выигрыши для каждого состояния природы. Это критерий крайнего оптимизма. Наилучшим признается решение, при котором достигается максимальный выигрыш, равный

.

Нетрудно увидеть, что для матрицы А наилучшим решением будет А1, при котором достигается максимальный выигрыш - 9.

Следует отметить, что ситуации, требующие применения такого критерия, в экономике в общем нередки, и пользуются им не только безоглядные оптимисты, но и игроки, поставленные в безвыходное положение, когда они вынуждены руководствоваться принципом "или пан, или пропал".[1]

Максиминный критерий Вальда

С позиций данного критерия природа рассматривается как агрессивно настроенный и сознательно действующий противник типа тех, которые противодействуют в стратегических играх (см. гл.2). Выбирается решение, для которого достигается значение

.

Для платежной матрицы А (1) нетрудно рассчитать:

для первой стратегии (i = 1) ;

для второй стратегии (i=2) ;

для третьей стратегии (i=3) .

Тогда , что соответствует второй стратегии A2 игрока 1.

В соответствии с критерием Вальда из всех самых неудачных результатов выбирается лучший (W = 3). Это перестраховочная позиция крайнего пессимизма, рассчитанная на худший случай. [1]

Такая стратегия приемлема, например, когда игрок не столь заинтересован в крупной удаче, но хочет себя застраховать от неожиданных проигрышей. Выбор такой стратегии определяется отношением игрока к риску.[7]

Критерий минимаксного риска Сэвиджа

Выбор стратегии аналогичен выбору стратегии по принципу Вальда с тем отличием, что игрок руководствуется не матрицей выигрышей А (1), а матрицей рисков R (2):

Для матрицы R (2) нетрудно рассчитать:

для первой стратегии (i=1) ;

для второй стратегии (i=2) ;

для третьей стратегии (i=3) .

Минимально возможный из самых крупных рисков, равный 4, достигается при использовании первой стратегии А1.[7]

Критерий пессимизма-оптимизма Гурвица

Этот критерий при выборе решения рекомендует руководствоваться некоторым средним результатом, характеризующим состояние между крайним пессимизмом и безудержным оптимизмом. Согласно этому критерию стратегия в матрице А выбирается в соответствии со значением

При p = 0 критерий Гурвица совпадает с максимаксным критерием, а при р = 1 - с критерием Вальда. Покажем процедуру применения данного критерия для матрицы А (1) при р = 0,5:

для первой стратегии:

для второй стратегии:

для третьей стратегии:

Тогда , т.е. оптимальной является вторая стратегия А2.[3]

Применительно к матрице рисков R критерий пессимизма-оптимизма Гурвица имеет вид:

При р = 0 выбор стратегии игрока 1 осуществляется по условию наименьшего из всех возможных рисков (); при р = 1 - по критерию минимаксного риска Сэвиджа.

В случае, когда по принятому критерию рекомендуется к использованию несколько стратегий, выбор между ними может делаться по дополнительному критерию, например в расчет могут приниматься средние квадратичные отклонения от средних выигрышей при каждой стратегии. Еще раз подчеркнем, что здесь стандартного подхода нет. Выбор может зависеть от склонности к риску ЛПР.[5]

В заключение приведем результаты применения рассмотренных выше критериев на примере следующей матрицы выигрышей:

Для игрока 1 лучшими являются стратегии:

по критерию Вальда - А3,по критерию Сэвиджа - А2 и А3,по критерию Гурвица (при р = 0,6) - А3;

по критерию максимакса - А4.

Поскольку стратегия А3, фигурирует в качестве оптимальной по трем критериям выбора из четырех испытанных, степень ее надежности можно признать достаточно высокой для того, чтобы рекомендовать эту стратегию к практическому применению.[7]

Таким образом, в случае отсутствия информации о вероятностях состоянии среды теория не дает однозначных и математически строгих рекомендации по выбору критериев принятия решений. Это объясняется в большей мере не слабостью теории, а неопределенностью самой ситуации. Единственный разумный выход в подобных случаях - попытаться получить дополнительную информацию, например, путем проведения исследований или экспериментов. В отсутствие дополнительной информации принимаемые решения теоретически недостаточно обоснованы и в значительной мере субъективны. Хотя применение математических методов в играх с природой не дает абсолютно достоверного результата и последний в определенной степени является субъективным (вследствие произвольности выбора критерия принятия решения), тем не менее создает некоторое упорядочение имеющихся в распоряжении ЛПР данных: задаются множество состояний природы, альтернативные решения, выигрыши и потери при различных сочетаниях состояния "среда - решение". Такое упорядочение представлений о проблеме само по себе способствует повышению качества принимаемых решений.[1]