logo
Принятие решений в условиях неопределенности. Игры с природой

Глава 3. Принятие решений в условиях риска

Методы принятия решений в условиях риска разрабатываются и обосновываются в рамках так называемой теории статистических решений. При этом в случае "доброкачественной", или стохастической, неопределенности, когда состояниям природы поставлены в соответствие вероятности, заданные экспортно либо вычисленные, решение обычно принимается на основе критерия максимума ожидаемого среднего выигрыша или минимума ожидаемого среднего риска (матрицы типа (1) либо (2)).[3]

Если для некоторой игры с природой, задаваемой платежной матрицей А = ||aij||m,n, стратегиям природы Пj соответствуют вероятности рj, то лучшей стратегией игрока 1 будет та, которая обеспечивает ему максимальный средний выигрыш, т.е.

Применительно к матрице рисков (матрице упущенных выгод) лучшей будет та стратегия игрока, которая обеспечивает ему минимальный средний риск:

Заметим, что когда говорится о среднем выигрыше или риске, то подразумевается многократное повторение акта принятия решений. Условность предположения заключается в том, что реально требуемого количества повторений чаще всего может и не быть.[5]

Покажем, что критерии (3) и (4) эквивалентны в том смысле, что оптимальные значения для них обеспечивает одна и та же стратегия Аi, игрока 1. Действительно,

т.е. значения критериев отличаются на постоянную величину, поэтому принятое решение не зависит от стратегии Аi.[3]

Например, для игры, задаваемой матрицей А (1) или матрицей R (2), при условии, что р1 = р2 = р3 = р4 = 1/4, А1 - лучшая стратегия игрока 1 по критерию (3), поскольку

Эта же стратегия является лучшей для игрока 1 по критерию (4) относительно обеспечения минимального уровня риска:

На практике целесообразно отдавать предпочтение матрице выигрышей (1) или матрице рисков (2) в зависимости от того, какая из них определяется с большей достоверностью. Это особенно важно учитывать при экспертных оценках элементов матриц А и R.[2]