14) Нормальное распределение
Нормальное распределение, также называемое гауссовским распределением — распределение вероятностей, которое задается функцией плотности распределения.
Нормальное распределение играет важнейшую роль во многих областях знаний, особенно в физике. Физическая величина, подверженная влиянию значительного числа случайных помех, часто подчиняется нормальному распределению, поэтому из всех распределений в природе чаще всего встречается нормальное (отсюда и произошло одно из его названий).
Нормальное распределение зависит от двух параметров — смещения и масштаба, то есть является с математической точки зрения не одним распределением, а целым их семейством. Значения параметров соответствуют значениям среднего (математического ожидания) и разброса (стандартного отклонения).
Стандартным нормальным распределением называется нормальное распределение с математическим ожиданием 0 и стандартным отклонением 1
Если случайные величины X1 и X2 независимы и имеют нормальное распределение с математическими ожиданиями μ1 и μ2 и дисперсиями и соответственно, то X1 + X2 также имеет нормальное распределение с математическим ожиданием μ1 + μ2 и дисперсией .
Нормальное распределение часто встречается в природе. Например, следующие случайные величины хорошо моделируются нормальным распределением:
отклонение при стрельбе
погрешности измерений
рост живых организмов
Такое широкое распространение закона связано с тем, что он является предельным законом, к которому приближаются многие другие (например, биномиальный).
Доказано, что сумма очень большого числа случайных величин, влияние каждой из которых близко к 0, имеет распределение, близкое к нормальному. Этот факт является содержанием центральной предельной теоремы.
- 1) Автокорреляционная функция
- 2) Анализ флуктации. Периодограмма
- 3) Временные ряды. Числовые характеристики наблюдений
- 4) Выделение периодических составляющих. Исключение регулярных циклов.
- 5) Выявление и оценка тренда
- 6) Дискретные и непрерывные распределения
- 7) Кластерный анализ. Общая теория графов.
- 8) Линейная множественная корреляция. Зависимость коэффициентов линейной множественной корреляции. Множественная регрессия.
- 9) Логнормальное распределение. Отличия. Свойства.
- 11) Метод наименьших квадратов. Корреляция.
- 14) Нормальное распределение
- 17) Построение эмпирических распределений. Выбор числа интервалов группировки.
- 21) Робастное оценивание
- 23) Сглаживание и фильтрация. Методы сглаживания. Влияние сглаживания на спектр.
- 24) События. Генеральная совокупность. Выборка.
- 25) Спектральный анализ. Цель спектрального анализа.
- 26) Статистическая гипотеза. Область отклонения гипотезы. Область принятия гипотезы.
- 27) Функция распределения и её свойства.