11) Метод наименьших квадратов. Корреляция.
Один из методов регрессионного анализа для оценки неизвестных величин по результатам измерений, содержащих случайные ошибки.
Когда искомая величина может быть измерена непосредственно, как, например, длина отрезка или угол, то, для увеличения точности, измерение производится много раз, и за окончательный результат берут арифметическое среднее из всех отдельных измерений.
Это правило арифметической середины основывается на соображениях теории вероятностей; легко показать, что сумма квадратов уклонений отдельных измерений от арифметической середины будет меньше, чем сумма квадратов уклонений отдельных измерений от какой бы то ни было другой величины. Само правило арифметической середины представляет, следовательно, простейший случай метода наименьших квадратов.
Корреляция - статистическая взаимосвязь двух или нескольких случайных величин. При этом, изменения значений одной или нескольких из этих величин приводят к систематическому изменению значений другой или других величин.
Математической мерой корреляции двух случайных величин служит корреляционное отношение, либо коэффициент корреляции R
Значительная корреляция между двумя случайными величинами всегда является свидетельством существования некоторой статистической связи в данной выборке, но эта связь не обязательно должна наблюдаться для другой выборки и иметь причинно-следственный характер. Часто заманчивая простота корреляционного исследования подталкивает исследователя делать ложные интуитивные выводы о наличии причинно-следственной связи между парами признаков, в то время как коэффициенты корреляции устанавливают лишь статистические взаимосвязи. Например, рассматривая пожары в конкретном городе, можно выявить весьма высокую корреляцию между ущербом, который нанес пожар, и количеством пожарных, участвовавших в ликвидации пожара, причём эта корреляция будет положительной. Из этого, однако, не следует вывод «бо́льшее количество пожарных приводит к бо́льшему ущербу», и тем более не имеет смысла попытка минимизировать ущерб от пожаров путем ликвидации пожарных бригад
- 1) Автокорреляционная функция
- 2) Анализ флуктации. Периодограмма
- 3) Временные ряды. Числовые характеристики наблюдений
- 4) Выделение периодических составляющих. Исключение регулярных циклов.
- 5) Выявление и оценка тренда
- 6) Дискретные и непрерывные распределения
- 7) Кластерный анализ. Общая теория графов.
- 8) Линейная множественная корреляция. Зависимость коэффициентов линейной множественной корреляции. Множественная регрессия.
- 9) Логнормальное распределение. Отличия. Свойства.
- 11) Метод наименьших квадратов. Корреляция.
- 14) Нормальное распределение
- 17) Построение эмпирических распределений. Выбор числа интервалов группировки.
- 21) Робастное оценивание
- 23) Сглаживание и фильтрация. Методы сглаживания. Влияние сглаживания на спектр.
- 24) События. Генеральная совокупность. Выборка.
- 25) Спектральный анализ. Цель спектрального анализа.
- 26) Статистическая гипотеза. Область отклонения гипотезы. Область принятия гипотезы.
- 27) Функция распределения и её свойства.