logo
Факторный анализ с примерами

Типовые задачи детерминированного факторного анализа

В детерминированном факторном анализе можно выделить четыре типовые задачи:

  1. Оценка влияния относительного изменения факторов на относительное изменение результативного показателя.

  2. Оценка влияния абсолютного изменения i-го фактора на абсолютное изменение результативного показателя.

  3. Определение отношения величины изменения результативного показателя, вызванного изменением i-го фактора, к базовой величине результативного показателя.

  4. Определение доли абсолютного изменения результативного показателя, вызванного изменением i-го фактора, в общем изменении результативного показателя.

Охарактеризуем эти задачи и рассмотрим решение каждой из них на конкретном простом примере.

Пример.

Объем валовой продукции (ВП) зависит от двух основных факторов первого уровня: численности работников (ЧР) и среднегодовой выработки (ГВ). Имеем двухфакторную мультипликативную модель: . Рассмотрим ситуацию, когда и выработка, и численность рабочих в отчетном периоде отклонились от запланированных значений.

Данные для расчетов приведены в таблице 1.

Таблица 1. Данные для факторного анализа объема валовой продукции.

Показатель

Условное обозначение

План

Факт

Отклонение

Валовая продукция, млн. руб.

ВП

160 000

240 000

80 000

Среднегодовая численность рабочих, чел.

ЧР

1000

1200

+200

Среднегодовая выработка одного рабочего, млн. руб.

ГВ

160

200

+40

Задача 1.

Задача имеет смысл для мультипликативных и кратных моделей. Рассмотрим простейшую двухфакторную модель . Очевидно, что при анализе динамики этих показателей будет выполняться следующее соотношение между индексами:

,

где значение индекса находится отношением значения показателя в отчетном периоде к базисному.

Рассчитаем индексы валовой продукции, численности работников и среднегодовой выработки для нашего примера:

;

.

Согласно вышеприведенному правилу, индекс валовой продукции равен произведению индексов численности работников и среднегодовой выработки, т. е.

.

Очевидно, что если мы рассчитаем непосредственно индекс валовой продукции, то получим то же самое значение:

.

Мы можем сделать вывод: в результате увеличения численности работников в 1,2 раза и увеличения среднегодовой выработки в 1,25 раза объем валовой продукции увеличился в 1,5 раза.

Таким образом, относительные изменения факторных и результативного показателей связаны той же зависимостью, что и показатели в исходной модели. Данная задача решается при ответе на вопросы типа: "Что будет, если i-й показатель изменится на n%, а j-й показатель изменится на k%?".

Задача 2.

Является основной задачей детерминированного факторного анализа; ее общая постановка имеет вид:

Пусть - жестко детерминированная модель, характеризующая изменение результативного показателя y от n факторов; все показатели получили приращение (например, в динамике, по сравнению с планом, по сравнению с эталоном):

; .

Требуется определить, какой частью приращение результативного показателя y обязано приращению i-го фактора, т. е. расписать следующую зависимость:

,

где - общее изменение результативного показателя, складывающееся под одновременным влиянием всех факторных признаков;

- изменение результативного показателя под влиянием только фактора .

В зависимости от того, какой метод анализа модели выбран, факторные разложения могут различаться. Поэтому рассмотрим в контексте данной задачи основные методы анализа факторных моделей.