Ряды динамики
Временной ряд называется также рядом динамики и представляет собой ряд последовательно расположенных во времени числовых значений соответствующего показателя. Он состоит из двух элементов:
периода времени, за который или по состоянию на который приводятся числовые значения (t);
числовых значений того или иного показателя, называемых уровнями ряда (у).
По характеру отображения динамики временные ряды делятся на моментные и интервальные. Уровни моментных рядов динамики характеризуют объекты изучения по состоянию на определенный момент времени: численность населения на конец года (или на дату переписи), товарные запасы на складе на начало каждого дня и т.д. Уровни интервальных рядов динамики характеризуют явления за определенный промежуток, интервал времени: товарооборот магазина за квартал, прибыль предприятия за год и т.п.
Если уровни интервального ряда представляют собой абсолютные величины, то их можно суммировать во времени, т.е. переходить от ряда динамики с малыми временными интервалами к более крупным промежуткам времени. Суммируя уровни интервальных рядов из абсолютных величин, можно строить ряды динамики с нарастающими итогами.
Уровни моментного динамического ряда не меняются с изменением временного промежутка. Так, если курс доллара дан по состоянию на каждый день года, то при переходе к ряду динамики с укрупненным интервалом (например, по декадам) ряд укоротится, но сами уровни на начало каждой декады останутся прежними.
Уровни временного ряда могут изменяться в самых разных направлениях: они могут возрастать или убывать, повторять ранее достигнутый уровень. Интенсивность их изменения бывает различной. Уровни ряда могут изменяться быстрее или медленнее. Для характеристики развития явления во времени применяются следующие показатели:
а) абсолютные приросты (Δу);
б) темпы роста (Тр);
в) темпы прироста (снижения) (ΔТр);
г) абсолютное ускорение или замедление (Δ″):
д) относительное ускорение (Δ″Тр).
Абсолютный прирост (абсолютное изменение) уровней ряда рассчитывается как разность двух уровней. Он показывает, на сколько единиц уровень одного периода больше или меньше уровня, другого периода.
В зависимости от базы сравнена абсолютные приросты могут быть цепными и базисными:
Δуцепной=yi – yi-1; Δубазисный=yi – yi-0. (1.69)
Если каждый последующий уровень ряда динамики сравнивается со своим предыдущим уровнем, то прирост называется цепным. Если же в качестве базы сравнения выступает за ряд лет один и тот же период, то прирост называется базисным.
Интенсивность изменения уровней временного ряда характеризуется темпами роста и прироста.
Темп роста есть отношение двух уровней ряда. Как и абсолютные приросты, темпы роста могут рассчитываться как цепные и как базисные:
(1.70)
Если база сравнения по периодам меняется, то найденные темпы роста называются цепными. Если же база сравнения по периодам неизменна (у0) темпы роста называются базисными.
Темпы роста, выраженные в коэффициентах, принято называть коэффициентами роста:
(1.71)
В анализе используется один из этих показателей: либо темп роста, либо коэффициент роста, ибо экономическое их содержание одно и то же, но по-разному выражено: в % (Тр) и в разах (Кр).
Если цепные темпы роста характеризуют интенсивность изменения уровней от года к году (от месяца к месяцу), то базисные темпы роста фиксируют интенсивность роста (снижения) за весь интервал времени между текущим и базисным уровнями.
Темп прироста есть отношение абсолютного прироста к предыдущему уровню динамического ряда (цепной показатель) и к уровню, принятому за базу сравнения по динамическому ряду (базисный показатель):
(1.72)
Между цепными и базисными показателями изменения уровней ряда существует следующая взаимосвязь:
а) сумма цепных абсолютных приростов равна базисному приросту;
б) произведение цепных коэффициентов роста равно базисному или равносильное этому деление рядом стоящих базисных коэффициентов роста друг на друга равно цепным коэффициентам роста.
Взаимосвязь цепных и базисных темпов (коэффициентов) роста позволяет при анализе, если необходимо, переходить от цепных показателей к базисным и наоборот;
в) темп прироста связан с темпом роста: ΔТр = Тр - 100. Поэтому при анализе обычно приводится какой-то один из них: темп роста либо темп прироста. Зная, цепные темпы прироста, можно определить базисный темп прироста. Для этого нужно от темпов прироста перейти к темпам (коэффициентам) роста и далее воспользоваться указанной выше взаимосвязью коэффициентов роста. Чтобы знать, что скрывается за каждым процентом прироста, рассчитывается абсолютное значение 1% прироста как отношение абсолютного прироста уровня за интервал времени к темпу прироста за этот же промежуток времени:
или . (1.73)
Иными словами, абсолютное значение 1% прироста в данном периоде есть сотая часть достигнутого уровня в предыдущем периоде. В связи с этим расчет абсолютного значения 1% прироста базисным методом не имеет смысла, ибо для каждого периода это будет одна и та же величина - сотая часть уровня базисного периода.
Абсолютные приросты показывают скорость изменения уровней ряда в единицу времени. Если они систематически возрастают, то ряд развивается с ускорением. Величина абсолютного ускорения определяется как Δ˝=Δi - Δi-1, т.е. по аналогии с цепным абсолютным приростом, но сравниваются между собой не уровни ряда, а их скорости.
Если систематически растут цепные темпы роста, то ряд развивается с относительным ускорением. Относительное ускорение можно определить как разность следующих друг за другом темпов роста или прироста:
или . (1.74)
Полученная величина выражается в процентных пунктах (п.п.).
Относительное ускорение может быть измерено и с помощью коэффициента опережения. Коэффициент опережения определяется как отношение последующего темпа роста к предыдущему:
. (1.75)
Коэффициенты опережения принято рассчитывать в сравнительном анализе нескольких рядов динамики. При параллельном изучении нескольких рядов динамики обычно их приводят к одному основанию путем расчета базисных темпов, роста с одинаковой по времени базой сравнения для всех рядов. Это позволяет наглядно видеть, для какого ряда интенсивность изменения уровней наибольшая. Сравнивая далее наибольшие темпы роста с наименьшими, определяют коэффициенты опережения в развитии одного явления по отношению к другому.
Для обобщения данных по рядам динамики рассчитываются:
средний уровень ряда;
средний абсолютный прирост;
средний темп роста и прироста.
Для разных видов рядов динамики средний уровень рассчитывается неодинаково.
По интервальному динамическому ряду из абсолютных величин с равными интервалами средний уровень определяется по средней арифметической простой из уровней ряда:
, (1.76)
где yi – уровни для i-го периода; n – число уровней в ряду динамики.
По интервальному временному ряду из относительных и средних величин средний уровень определяется так же, как в статике, т.е. с учетом информации по признакам, связанным с осредняемым. Так, средняя урожайность должна определяться по средней арифметической взвешенной:
, (1.77)
где у - урожайность по годам; х-посевная площадь по годам.
По моментному динамическому ряду в зависимости от исходной информации средний уровень ряда определяется тремя способами.
1 Если известны данные об изменении уровня ряда внутри временного промежутка, то средний уровень определяется как средняя арифметическая взвешенная:
, (1.78)
где уi - уровень моментного динамического ряда; ti - период, в течение которого уровень у, остается неизменным, т.е. период действия уровня уi.
2 Однако не всегда имеется информация об изменении уровня моментного ряда внутри рассматриваемого временного промежутка. В этом случае средний уровень моментного ряда динамики определяется приближенно как средняя арифметическая взвешенная из парных смежных средних:
, (1.79)
где - смежные парные средние, найденные как средняя арифметическая простая из двух рядом стоящих уровней, т.е.
. (1.80)
Величина отображает средний уровень за определенный интервал времени.
3 Если интервалы между датами равны, то рассмотренная ранее средняя арифметическая взвешенная преобразуется в тождественную ей среднюю хронологическую:
. (1.81)
Данная формула используется, например, для расчета среднегодовой стоимости имущества при уплате налога на имущество.
Кроме среднего уровня, при анализе и прогнозировании широко используются средние показатели изменения уровней ряда, а именно средний абсолютный прирост и средний темп роста.
Средний абсолютный прирост определяется как средняя арифметическая простая из цепных приростов:
. (1.82)
Так как ΣΔцепные=Δбазисное, средний абсолютный прирост можно определять следующим образом:
, (1.83)
где yn - последний уровень динамического ряда; y0 - уровень, взятый за базу сравнения; n – число уровней в ряду динамики.
Для обобщения характеристики интенсивности роста рассчитывается средний темп (коэффициент) роста по средней геометрической простой:
, (1.84)
где К1, К2, ..., Kn - цепные коэффициенты роста; n - число цепных коэффициентов роста.
Учитывая взаимосвязь цепных и базисных темпов роста, средний темп роста можно представить следующим образом:
. (1.85)
В средней геометрической корень степени определяется как разность хронологических дат.
Если даты представлены не от года к году, а с интервалами, для расчета средних показателей динамики используются формулы:
среднегодового абсолютного прироста
; (1.86)
среднегодового коэффициента роста
, (1.87)
где Т - продолжительность периода.
Среднегодовой темп прироста определяется на основе среднего темпа роста:
. (1.88)
Рассмотренные средние показатели динамики достаточно широко используются при экстраполяции тенденции ввиду их простоты и возможности четко интерпретировать результат.
- Сибирский государственный университет путей сообщения (сгупс)
- Общая и таможенная статистика
- Ответственный редактор
- Содержание
- 1 Общая теория статистики
- Предмет и метод статистики
- 1.2 Статистическое наблюдение
- 1.4 Абсолютные, относительные и средние показатели в статистике
- Контрольные вопросы и задания:
- 1.5 Ряды распределения и показатели вариации
- 1.6 Выборочное наблюдение
- Контрольные вопросы и задания:
- 1.7 Статистический анализ связей
- Контрольные вопросы и задания:
- Ряды динамики
- Контрольные вопросы и задания:
- 1.9 Индексы
- 2 Таможенная статистика
- 2.1 Роль и место таможенной статистики в системе статистических дисциплин
- 2.2 Организация таможенной статистики в рф
- 2.3 Декларация на товары – основной источник данных таможенной статистики
- 2.3.1 Общие положения, относящиеся к декларации на товары
- 2.3.2 Классификаторы, применяемые при заполнении декларации на товары
- 2.3.3 Источники данных таможенной статистики внешней торговли
- 2.3.4 Порядок сбора, обработки, передачи электронных копий дт и формирование баз данных всех уровней в рамках еаис таможенных органов
- 2.4 Методология таможенной статистики внешней торговли
- 2.4.1 Источники формирования таможенной статистики внешней торговли
- 2.4.2 Системы учета экспорта и импорта и круг учитываемых товаров
- 2.4.3 Показатели таможенной статистики внешней торговли, способы и методы их учета
- 2.4.4 Распространение данных таможенной статистики
- 2.4.5 Конфиденциальность информации
- 2.4.6 Обеспечение сопоставимости данных
- 2.5 Статистическая стоимость товара
- 2.5.1 Структура затрат по доставке товаров от продавца до покупателя во внешней торговле
- 2.5.2 Коммерческие условия поставки товаров и их классификация
- 2.5.3 Определение статистической стоимости товара
- 2.6 Применение основных положений общей теории статистики в таможенной статистике внешней торговли
- 2.6.1 Статистическое наблюдение при исследовании внешней торговли
- 2.6.2 Сводка и группировка статистических показателей внешней торговли
- 2.6.3 Анализ статистических показателей внешней торговли
- 2.6.4 Использование абсолютных и относительных величин, сравнения при анализе показателей внешней торговли
- 2.6.5 Применение средних величин при анализе показателей внешней торговли
- 2.6.6 Индексный метод в анализе показателей внешней торговли
- 2.6.7 Применение балансового метода
- 2.6.8 Применение рядов динамики и атрибутивных рядов при анализе показателей внешней торговли
- 2.6.9 Использование приемов и методов статистического анализа в исследовании внешней торговли субъектов федерации по данным таможенной статистики
- 2.7 Специальная таможенная статистика
- 2.7.1 Отчетность подразделений таможенной статистики
- 2.7.2 Отчетность подразделений валютного контроля
- 2.7.3 Отчетность подразделений таможенного оформления и таможенного контроля
- 2.7.4 Отчетность подразделений правоохранительного блока
- Раздел I. Сведения о решениях, принятых по материалам с признаками таможенных преступлений