Журналы лабораторных работ
Результаты анализа независимости временных рядов
по критерию Бокса - Пирса
№ п/п |
Имя переменной | Теор. свойство (H0 – белый шум, __ H0 - не белый шум) |
p - value | Результат анализа (H0 – белый шум, __ H0- не белый шум) | Ошибка принятия решения (ошибка отсутствует, ошибка первого рода, ошибка второго рода) |
1 | noise1 |
|
|
|
|
2 | x3 |
|
|
|
|
3 | Slow |
|
|
|
|
4 | x4 |
|
|
|
|
5 | l_noise |
|
|
|
|
6 | g_noise |
|
|
|
|
При проведении анализа установите параметр метода L=12.
Заполните таблицу по результатам анализа. Принимая во внимание значение p – value, сделайте вывод относительно того, для каких типов временных рядов метод Бокса – Пирса дает наиболее надежный статистический результат:
Содержание
- Введение
- 1.Главное и текущие окна анализа данных
- 2.Электронная таблица
- Пример 4
- Пример 6
- 3.Графическое представление данных
- 4.Пользовательский интерфейс текущего окна анализа
- Общее знакомство с пакетом Statgraphics. Генерация временных рядов
- 1.1 Генерация тренда временного ряда
- Г) Рассчитайте размах тренда range и масштабный коэффициент (переменные range и scale соответственно).
- Е) Сохраните график в отчетном документе (StatGallery).
- 1.2 Генерация реализаций абсолютно случайного временного ряда
- 1.3 Генерация временных рядов pk , sk , k
- 1.4 Моделирование грубых сбоев измерений
- 1.5 Генерация обобщенной реализации временного ряда
- Статистический анализ стационарных временных рядов
- 2.1 Подготовка данных для статистических исследований
- А) Напишите расчетные выражения для переменных x1 – x5 с учетом синтаксиса языка пакета statgraphics Plus 5.1 и числовых значений параметров алгебраических выражений своего индивидуального задания.
- 2.2 Анализ одномерного закона распределения вероятностей
- 2.3 Сравнение экспериментального и теоретического
- 2.4 Изучение описательных статистик стационарного
- Для временных рядов x1 – x5
- 2.5 Исследование автокорреляционной функции стационарного временного ряда
- Анализ независимости значений временного ряда по одной реализации
- 3.1 Подготовка данных для статистических исследований
- Результат визуального анализа временных рядов
- 3.2 Анализ независимости временного ряда по критерию
- Результаты анализа независимости временных рядов
- 3.3 Анализ независимости временного ряда по критерию
- Результаты анализа независимости временных рядов
- 3.4 Анализ независимости временного ряда
- Результаты анализа независимости временных рядов
- 3.5 Анализ интервала корреляции для принятия решения
- Результаты анализа независимости временных рядов
- 3.6 Заключение о точности и области практического применения исследованных методов
- Сглаживание временных рядов линейными и нелинейными фильтрами
- 4.1 Исследование возможностей медианного фильтра
- 4.2 Анализ чувствительности линейного фильтра к выбросам входных данных
- 4.3 Изучение импульсной реакции линейных сглаживающих фильтров
- 4.4 Исследование динамической ошибки
- 4.5 Исследование коэффициента подавления помехи линейными сглаживающими фильтрами
- Оптимальная обработка данных линейным фильтром с конечной памятью
- 5.1 Расчет оптимального линейного фильтра с конечной памятью
- 5.2 Исследование свойств оптимального фильтра
- Спектральный анализ временных рядов конечной длины
- Исследование периодограммы импульсного сигнала
- 6.2 Спектральный анализ гармонической функции
- Расчет амплитудно-частотных характеристик
- Исследование периодограммы реализации белого шума
- Спектральный анализ низкочастотного временного ряда, измеренного на фоне помех