logo
Statistika МЕТОДИЧКА

28. Статистические методы выявления наличия корреляционной связи: сопоставление параллельных рядов, построение корреляционной таблицы, построение групповой таблицы, графический метод

Для ответа на вопрос о наличии или отсутствии корреляционной связи используется ряд специфических приемов. Рассмотрим так называемые элементарные приемы.

При сопоставлении двух параллельных рядов – ряда значений факторного и соответствующих ему значений результативного признака – значения факторного признака (х) располагают в возрастающем порядке и затем прослеживают направление изменения величины результативного признака (y). В тех случаях, когда возрастание величины х влечет за собой возрастание и величины y, говорят о возможном наличии прямой корреляционной связи, если же с увеличением x величина y имеет тенденцию к уменьшению, то можно предполагать обратную связь между ними.

Построение корреляционной таблицы начинают с группировки значений х и у (если это необходимо). В корреляционной таблице х располагают в строках, а у – в столбцах. На пересечении строк и столбцов проставляют черточки, соответствующие частотам повторения данного сочетания значений х и у. Если частоты расположены на диагонали из левого верхнего угла в правый нижний угол, то можно предположить наличие прямой корреляционной связи, если же частоты расположены по диагонали справа налево, то предполагают наличие обратной связи между признаками. Чем ближе черточки к воображаемой диагонали, связь теснее.

При построении групповой таблицы все наблюдения разбиваются на группы в зависимости от величины признака-фактора, и по каждой группе вычисляются среднее значение результативного признака. Корреляционная зависимость отчетливо обнаруживается только при рассмотрении средних значений результативного признака, соответствующих определенным значениям факторного признак, так как при достаточно большом числе наблюдений в каждой группе влияние прочих случайных факторов при расчете групповой средней будет взаимопогашаться, и четче выступит зависимость результативного признака от фактора, положенного в основание группировки.

Графический метод применяют для предварительного выявления наличия связи, раскрытия ее характера и для выбора формы связи. Используя данные об индивидуальных значениях х и соответствующих ему значениях у, можно построить в прямоугольной системе координат точечный график, который называю «полем корреляции», по форме которого можно предположить наличие и направление связи.

29. Показатели характеризующие наличие и степень тесноты связи в случае парной зависимости: коэффициент корреляции знаков (Фехнера), линейный коэффициент корреляции, ранговый коэффициент корреляции (Спирмэна)

Степень зависимости между факторным признаком (х) и результативным (у) оценивается многими показателями.

К простейшим показателям степени тесноты связи относится коэффициент корреляции знаков (коэффициент Фехнера). Этот показатель основан на оценке степени согласованности направлений отклонений индивидуальных значений факторного и результативного признаков от соответствующих средних. Для его расчета вычисляют среднее значение результативного и факторного признаков:

; ,

где n – количество значений признаков.

Затем определяют знаки отклонений для всех взаимосвязанных пар признаков.

Коэффициент Фехнера определяется следующим образом:

,

где С – число совпадений знаков отклонений индивидуальных значений от средней (согласованная вариация);

Н – число несовпадений знаков отклонений индивидуальных значений от средней (несогласованная вариация).

Коэффициент Фехнера может принимать значения в пределах от -1 до +1. Положительное значение данного коэффициента позволяет сделать вывод о возможном наличии прямой связи, отрицательное – о возможном наличии обратной связи. Так как величина этого показателя не зависит от величины отклонений факторного и результативного признаков от соответствующих средних, то говорить о степени тесноты корреляционной связи и ее существенности на основании только коэффициента Фехнера нельзя.

Более совершенным показателем степени тесноты связи является линейный коэффициент корреляции. При расчете этого показателя учитываются не только знаки отклонений индивидуальных значений признаков от средней, но и сама величина таких отклонений. Формула для расчета линейного коэффициента корреляции (r) выглядит следующим образом:

.

Линейный коэффициент корреляции может принимать любое значение в пределах от -1 до +1. Чем ближе коэффициент корреляции по абсолютной величине к 1, тем теснее связь между признаками. Знак при коэффициенте указывает на направление связи: прямой зависимости соответствует знак «+», а обратной зависимости – «-».

Квадрат коэффициента корреляции носит название коэффициента детерминации (r2). Его значение, выраженное в процентах, показывает, какой процент вариации результативного признака объясняется вариацией факторного признака.

Коэффициент корреляции рангов Спирмэна основан на рассмотрении разностей рангов значений факторного и результативного признаков (di):

Коэффициент корреляции рангов может принимать любое значение в пределах от -1 до +1. Чем ближе коэффициент по абсолютной величине к 1, тем теснее связь между признаками. Знак при коэффициенте указывает на направление связи: прямой зависимости соответствует знак «+», а обратной зависимости – знак «-».