5.2. Характеристики центру розподілу: середня, мода, медіана.
Центром тяжіння будь-якої статистичної сукупності є типовий рівень ознаки, узагальнююча характеристика всього розмаїття її індивідуальних значень. Такою характеристикою є середня величина.
Окрім типового рівня важливе значення має домінанта, тобто найбільш поширене значення ознаки. Таке значення називають модою.
Модою називається величина ознаки (варіанта), яка найчастіше зустрічається в даній сукупності.
У дискретному ряду моду визначають безпосередньо за найбільшою частотою (часткою).
В інтервальному ряду за тим самим принципом визначається модальний інтервал, а потім конкретне модальне значення в середині інтервалу обчислюється за інтерполяційною формулою:
,
де х0 – нижня межа модального інтервалу;
іМО – ширина модального інтервалу;
fМО – частота модального інтервалу;
fМО-1 – частота передмодального інтервалу;
fМО+1 – частота післямодального інтервалу.
Для моди як домінанти число відхилень (х – Мо) мінімальне. Оскільки мода не належить від крайніх значень ознаки, то її доцільно використовувати тоді, коли ряд розподілу має невизначені межі.
Характеристикою центра розподілу вважається також медіана – значення ознаки, яка припадає на середину впорядкованого ряду, поділяє його навпіл – на два рівні за обсягом частини.
Щоб знайти медіану в дискретному варіаційному ряду, потрібно спочатку розташувати всі варіанти в зростаючому або спадаючому порядку. Потім визначити номер медіани, який вкаже на її розташування в рангованому ряді за формулою:
Щоб визначити медіану інтервального варіаційного ряду спочатку, за допомогою нагромаджених частот, потрібно знайти інтервал, що містить медіану. Значення медіани в середині інтервалу, як і значення моди, обчислюють за інтерполяційною формулою:
,
де х0 – нижня межа медіанного інтервалу;
іМе – ширина медіанного інтервалу;
fМе – частота модального інтервалу;
SМе-1 – кумулятивна частота передмедіанного інтервалу.
Медіана, як і мода, не залежить від крайніх значень ознаки; сума модулів відхилень варіант від медіани мінімальна, тобто вона має властивість лінійного мінімуму:
Цю властивість медіани можна використати при проектуванні розміщення зупинок міського транспорту, заготівельних пунктів тощо.
Окрім моди і медіани, в аналізі закономірностей розподілу використовуються також квартилі та децилі. Квартилі – це варіанти, які поділяють обсяги сукупності на чотири рівні частини, децилі – на десять рівних частин. Ці характеристики визначаються на основі кумулятивних частот (часток) за аналогією з медіаною, яка є другим кварти лем або п’ятим децилем.
Мода, медіана, квартилі і децилі відносяться до так званих порядкових
статистик, під якими розуміють варіант, який займає певне порядкове місце в
рангованому варіаційному ряду.
Їх використання в статистичному аналізі варіаційних рядів дозволяє більш глибоко дослідити і детальніше охарактеризувати сукупність, яка вивчається.
- Тема 1 предмет і метод статистики
- 1.1. Предмет статистики
- 1.2. Основні категорії статистики
- 1.3. Методи статистичного дослідження
- Тема 2 статистичне спостереження
- 2.1. Суть, джерела та організаційні форми статистичного спостереження
- 2.2. План статистичного спостереження
- 2.3. Види статистичного спостереження
- Тема 3 зведення і групування статистичних даних
- 3.1 Суть статистичного зведення
- 3.2. Класифікації та групування
- 3.3. Принципи формування інтервалів груп
- 3.4. Статистичні таблиці, їх види та правила побудови
- Тема 4 статистичні показники
- 4.1. Суть і види статистичних показників.
- 4.2. Абсолютні статистичні величини, одиниці їх вимірювання
- Характеристика відносних величин.
- 4.4. Середні величини, умови наукового їх застосування.
- 4.5. Середня арифметична, основні її властивості.
- 4.6. Середня гармонійна, її різновиди і сфера використання.
- 4.7. Характеристика середньої геометричної та середньої квадратичної величини.
- 4.8. Система статистичних показників.
- 5.1. Ряд розподілу – основа аналізу закономірностей розподілу.
- 5.2. Характеристики центру розподілу: середня, мода, медіана.
- 5.3. Сутність та показники варіації.
- 5.4. Характеристики форми розподілу.
- Тема 6 Вибірковий метод. Статистична перевірка гіпотез
- 6.1. Суть вибіркового спостереження.
- 6.2. Похибки вибірки.
- 6.3. Визначення обсягу вибірки.
- 6.4. Статистична перевірка гіпотез.
- Тема 7 Статистичні методи вимірювання взаємозв’язків
- 7.1. Загальний зв’язок явищ. Види зв’язків. Завдання статистичного вивчення зв’язку.
- 7.2. Кореляційний і регресійний аналізи статистичного зв’язку соціально-економічних явищ.
- 7.3. Показники тісноти зв’язку.
- 7.4. Нелінійні залежності.
- 7.5. Побудова багатофакторних моделей.
- Тема 8 Ряди динаміки. Аналіз інтенсивності та тенденцій розвитку
- 8.1. Суть та складові елементи ряду динаміки. Види динамічних рядів.
- 8.2. Основні показники рядів динаміки.
- 8.3. Середні показники динаміки.
- 8.4. Виявлення тенденцій розвитку явищ.
- 8.5. Характеристика сезонних коливань, методи їх вимірювання.
- Тема 9 індекси
- 9.1. Суть та функції індексів у статистичному дослідженні. Види індексів.
- 9.2. Методологічні принципи побудови агрегатних індексів.
- 9.3. Середньозважені індекси, приведення їх до агрегатної форми.
- 9.4. Індекси середніх величин: змінного складу; фіксованого складу і структурних зрушень; їх взаємозв’язок.
- 9.5. Характеристика територіальних індексів.
- Тема 10 графічний метод
- 10.1. Поняття про статистичні графіки і правила їх побудови.
- 10.2. Графіки порівняння статистичних величин.
- 10.3. Зображення структури явищ і структурних зрушень.
- 10.4. Графічне зображення динаміки статистичних показників.
- 10.5. Контрольно-планові графіки.
- 10.6. Графіки просторового розміщення явищ.