Критерий Розенбаума.
Q - критерий Розенбаума
Назначение критерия
Критерий используется для оценки различий между двумя выборками по уровню какого-либо признака, количественно измеренного. В каждой из выборок должно быть не менее 11 испытуемых.
Описание критерия
Это очень простой непараметрический критерий, который позволяет быстро оценить различия между двумя выборками по какому-либо признаку. Однако если критерий Q не выявляет достоверных различий, это еще не означает, что их действительно нет.
В этом случае стоит применить критерий φ* Фишера. Если же Q-критерий выявляет достоверные различия между выборками с уровнем значимости р<0,01, можно ограничиться только им и избежать трудностей применения других критериев.
Критерий применяется в тех случаях, когда данные представлены по крайней мере в порядковой шкале. Признак должен варьировать в каком-то диапазоне значений, иначе сопоставления с помощью Q -критерия просто невозможны. Например, если у нас только 3 значения признака, 1, 2 и 3, - нам очень трудно будет установить различия. Метод Розенбаума требует, следовательно, достаточно тонко измеренных признаков.
Применение критерия начинаем с того, что упорядочиваем значения признака в обеих выборках по нарастанию (или убыванию) признака. Лучше всего, если данные каждого испытуемого представлены на отдельной карточке. Тогда ничего не стоит упорядочить два ряда значений по интересующему нас признаку, раскладывая карточки на столе. Так мы сразу увидим, совпадают ли диапазоны значений, и если нет, то насколько один ряд значений "выше" (S1), а второй - "ниже" (S2). Для того, чтобы не запутаться, в этом и во многих других критериях рекомендуется первым рядом (выборкой, группой) считать тот ряд, где значения выше, а вторым рядом - тот, где значения ниже.
Гипотезы
H0: Уровень признака в выборке 1 не превышает уровня признака в выборке 2.
H1: Уровень признака в выборке 1 превышает уровень признака в выборке 2.
Ограничения критерия Q
1. В каждой из сопоставляемых выборок должно быть не менее 11 наблюдений. При этом объемы выборок должны примерно совпадать. Е.В. Гублером указываются следующие правила:
а) если в обеих выборках меньше 50 наблюдений, то абсолютная величина разности между n1 и n2 не должна быть больше 10 наблюдений;
б) если в каждой из выборок больше 51 наблюдения, но меньше 100, то абсолютная величина разности между n1 и n2 не должна быть больше 20 наблюдений;
в) если в каждой из выборок больше 100 наблюдений, то допускается, чтобы одна из выборок была больше другой не более чем в 1,5-2 раза (Гублер Е.В., 1978, с. 75).
Критерий Манна-Уитни.
. U - критерий Манна-Уитни
Назначение критерия
Критерий предназначен для оценки различий между двумя выборками по уровню какого-либо признака, количественно измеренного. Он позволяет выявлять различия между малыми выборками, когда n1•n2≥3 или n1=2, n2≥5, и является более мощным, чем критерий Розенбаума.
Описание критерия
Существует несколько способов использования критерия и несколько вариантов таблиц критических значений, соответствующих этим способам).
Этот метод определяет, достаточно ли мала зона перекрещивающихся значений между двумя рядами. Мы помним, что 1-м рядом (выборкой, группой) мы называем тот ряд значений, в котором значения, по предварительной оценке, выше, а 2-м рядом - тот, где они предположительно ниже.
Чем меньше область перекрещивающихся значений, тем более вероятно, что различия достоверны. Иногда эти различия называют различиями в расположении двух выборок (Welkowitz J. et al., 1982).
Эмпирическое значение критерия U отражает то, насколько велика зона совпадения между рядами. Поэтому чем меньше Uэмп, тем более вероятно, что различия достоверны.
Гипотезы
Н0: Уровень признака в группе 2 не ниже уровня признака в группе 1.
H1: Уровень признака в группе 2 ниже уровня признака в группе 1.
Таблица критических значений критерия Q приведена в конспете.
Алгоритм
Упорядочить значения по степени возрастания признака. Выборка 1: значения предполагаются >.
Определить макс значение в выборке 2.
Подсчитать количество значений в выборке 1, которые выше макс значения выборки 2: S1
Определить мин значение в выборке 1.
Подсчитать количество значений в выборке 2, которые ниже мин значения выборке 1: S2
6. Qэмп = S1+S2
7. По таблице определить критические значения Q
для n1, n2. Если Q эмп >= Q 0,05, H0 отвергается.
При n1, n2 >=26 H0 отвергается, если Qэмп = 8 (p<=0,05), =10 (p<=0,01).
Ограничения критерия U
1. В каждой выборке должно быть не менее 3 наблюдений: n1,n2≥3; допускается, чтобы в одной выборке было 2 наблюдения, но тогда во второй их должно быть не менее 5.
2. В каждой выборке должно быть не более 60 наблюдений; n1,n2≤60. Однако уже при n1,n2>20 ранжирование становиться достаточно трудоемким.
На наш взгляд, в случае, если n1,n2>20, лучше использовать другой критерий, а именно угловое преобразование Фишера.
- Что такое статистика. Предмет. Цели. Составные части.
- Классификация признаков.
- Абсолютные и относительные показатели.
- Способы формирования выборок.
- План статистического наблюдения.
- Виды статистического наблюдения:
- Степенные средние.
- 5 Базовых показателей вариационного ряда.
- Мода и медиана.
- Квартили и квинтили.
- Децили и перцентили.
- Основные показатели изменчивости.
- Простое и взвешенное стандартное отклонение (для выборки и гс).
- Дисперсия.
- Относительные показатели изменчивости
- Основные параметры нормального распределения.
- Асимметрия.
- Эксцесс.
- Классификация гипотез.
- Понятие и классификация критериев проверки гипотез.
- Критерий Розенбаума.
- Правила ранжирования
- Алгоритм 4 Подсчет критерия u Манна-Уитни.
- Критерий χ2 Пирсона.
- Корреляция: цели, виды.
- Надежность коэффициента корреляции.
- Регрессия: цели, виды
- Регрессия: ошибка выбранной математической модели.
- Множественная регрессия.
- Факторный анализ: цели, этапы
- 1 Этап: Построение матрицы попарных корреляций
- Кластерный анализ: цели, Евклидово расстояние.
- Кластерный анализ: методы объединения объектов.
- Кластерный анализ: стандартизация.
- Основные характеристики кластеров.
- Дисперсионный анализ: цели, классификация.
- Однофакторый дисперсионный анализ: основные формулы, область применения.