logo search
Учебник СтатистикаMicrosoft Office Word

8.3. Середня абсолютна та відносна швидкість розвитку

З плином часу змінюються, варіюють рівні динамічних рядів і обчислені на їх основі абсолютні прирости та темпи зростання. Постає потреба узагальнення притаманних динамічному ряду властивостей, визначення типових характеристик розвитку. Такими характеристиками є середні величини. Зауважимо, що динамічна середня буде типовою характеристикою лише за умови однорідності ряду, коли причинний комплекс формування закономірностей розвитку більш-менш стабільний.

Середні рівні використовують насамперед для узагальнення коливних рядів. Наприклад, при аналізі динаміки сільськогосподарського виробництва оперують не річними, а більш сталими середньорічними показниками за певні періоди. Середні рівні необхідні також для забезпечення порівнянності чисельника і знаменника при побудові динамічних рядів похідних показників. Наприклад, виробництво продукції на одного працюючого. Обсяг продукції — інтервальний показник, а кількість працюючих — моментний. Щоб забезпечити порівнянність цих показників, слід обчислити середньорічну кількість працюючих.

Метод обчислення середнього рівня динамічного ряду залежить від статистичної структури показника. В інтервальному ряді абсолютних величин, рівні якого динамічно адитивні, використовується середня арифметична проста:

,

де n — число рівнів ряду.

У моментному ряді, за припущення про рівномірну зміну показника між датами, середня розраховується як півсума значень на початок і кінець періоду:

.

Якщо в моментному ряді n > 2 і між суміжнимі датами однакові інтервали, розрахунок виконується за формулою середньої хронологічної:

.

Обґрунтування та розрахунок такої середньої наведено в підрозд. 4.4.

У моментних рядах з різними інтервалами між датами розраховується середня арифметична зважена:

,

де — інтервал часу між датами,m — кількість інтервалів.

Середній абсолютний приріст (абсолютна швидкість динаміки) обчислюється діленням загального приросту за весь період на довжину цього періоду у відповідних одиницях часу (рік, квартал, місяць тощо):

.

Наприклад, 1996 року автомобільним транспортом переве- зено 2072 тис. т вантажів, 1999 року — 2126 тис. т. Середьо- річний приріст цього показника за 1997 — 1999 рр. становить = (2126 – 2072) : 3 = 18 тис. т.

При обчисленні середнього темпу зростання враховується правило складних процентів, за якими змінюється відносна швидкість динаміки (нагромаджується приріст на приріст). Тому серед­ній темп зростання обчислюється за формулою середньої геометричної з ланцюгових темпів зростання:

,

де n — кількість темпів зростання за однакові інтервали часу.

Наприклад, за останні 3 роки невпинно зростали тарифи на автоперевезення. Темпи зростання становили: 1997 р. — 1,03; 1998 р. — 1,08; 1999 р. — 1,05. Середьорічний темп зростання

або 105,3 %.

Урахувавши взаємозв’язок ланцюгових і базисних темпів зростання, формулу середньої геометричної можна записати так:

.

Скажімо, вартість споживчого кошика за три роки зросла на 12,5%. Середньорічний темп зростання становить

Тобто щороку споживчий кошик дорожчав у середньому на 4%. Розрахунок можна виконувати за допомогою логарифмів: або. Наприклад, прямі іноземні інвестиції в галузь 1996 року становили 172 млн дол. США, 1999 року — 313,7. Десяткові логарифми, відповідно, 2,2355 і 2,4965. ЗвідсиПотенціювання дає

Отже, середній темп зростання можна обчислити на основі:

При інтерпретації середньої абсолютної чи відносної швидкості динаміки необхідно вказувати часовий інтервал, до якого належать середні, та часову одиницю вимірювання (рік, квартал, місяць, доба тощо).