Расчет опорного (базисного) плана транспортной задачи методом «северо-западного угла». Формулы расчета потенциалов занятых клеток и расчета оценок свободных клеток матрицы транспортной задачи.
Метод северо-западного угла:
В данном методе запасы очередного по номеру поставщика используются для обеспечения запросов очередных по номеру потребителей до тех пор, пока не будут исчерпаны полностью, после чего используются запасы следующего по номеру поставщика.
На каждом шаге метода северо-западного угла из всех не вычеркнутых клеток выбирается самая левая и верхняя (северо-западная) клетка. Другими словами, на каждом шаге выбирается первая из оставшихся не вычеркнутых строк и первый из оставшихся не вычеркнутых столбцов.
Для того, чтобы заполнить клетку (i,j), необходимо сравнить текущий запас товара в рассматриваемой i-й строке с текущей потребностью в рассматриваемом j-м столбце .
Если существующий запас позволяет перевезти всю потребность, то
-
в клетку (i,j) в качестве перевозки вписывается значение потребности
-
j-й столбец вычеркивается, поскольку его потребность уже исчерпана;
-
от существующего запаса в i-й строке отнимается величина сделанной перевозки, прежний запас зачеркивается, а вместо него записывается остаток, т.е. .
Если существующий запас не позволяет перевезти всю потребность, то
-
в клетку (i,j) в качестве перевозки вписывается значение запаса ;
-
i-я строка вычеркивается, поскольку ее запас уже исчерпан;
-
от существующей потребности в j-й строке отнимается величина сделанной перевозки, прежняя потребность зачеркивается, а вместо нее записывается остаток, т.е..
Нахождение опорного плана продолжается до тех пор, пока не будут вычеркнуты все строки и столбцы.
Потенциалы занятых клеток рассчитываются по формуле Cij=Vj+Ui. Cij - оценка занятой клетки, Vj - потенциал занятой клетки по j-му столбцу, Ui - потенциал занятой клетки по i-ой строке.
Вычислить оценки Sij для всех свободных клеток можно по формуле Sij= Cij-( Ui+Vj).
-
Расчет опорного (базисного) плана транспортной задачи методом минимальных тарифов(минимального элемента). Правила построения цепочек перемещения при решении транспортной задачи методом потенциалов. Экономическое содержание перемещений.
Метод минимального элемента
Шаг 1. Составляют транспортную таблицу.
Шаг 2. Выбирают клетку таблицы, которой соответствует минимальное значение тарифа, и переходят на шаг 3.
Шаг 3. В выбранную клетку помещают максимально возможное число единиц продукции, разрешенное ограничениями на предложение и спрос. После этого, если предложение производителя исчерпано, вычеркивают соответствующую строку; если спрос удовлетворен, вычеркивают соответствующий столбец.
Если все клетки заполнены или вычеркнуты, то план перевозок построен. В противном случае переходят к шагу 2 без учета заполненных и вычеркнутых клеток.
Построение цепи (цикла) перемещения по правилам:
• Цепочку можно строить по горизонтали или вертикали, по ходу часовой стрелки или против хода часовой стрелки.
• Цепочка должна закончиться в клетке с оценкой dij*.
• Цепочка перемещений строится из свободной клетки с оценкой dij* до одной из занятых клеток, где делается поворот на 90 градусов. После этого снова осуществляется перемещение до занятой клетки и делается поворот на 90 градусов и так далее. Нужно вернуться в клетку, из которой начали перемещение, за наименьшее число поворотов (наиболее короткий путь).
Экономический смысл: приращение оценки единицы продукта при его перевозке по коммуникации AjBj не должно превышать транспортные расходы)
- Автокорреляционная функция, коррелограмма и выявление структуры временного ряда.
- Автокорреляция уровней временного ряда. Свойства коэффициента временной автокорреляции.
- Аналитическое выравнивание временного ряда. Ошибки спецификации при выборе вида тренда.
- Балансовый метод планирования. Области применения. Преимущества модели «затраты-выпуск».
- Временные параметры событий сетевых моделей: ранний срок, поздний срок, резерв времени. Критические события.
- Геометрическая интерпретация злп. Графическая интерпретация целевой функции. Особые случаи при графическом решении злп.
- Граф-аналитический метод решения злп. Геометрическая интерпретация и графическое решение злп.
- Коэффициент напряженности работы в сетевой модели. Пути снижения напряженности работ.
- Коэффициенты прямых и косвенных материальных затрат в матричных моделях баланса. Основные уравнения математической модели балансового метода планирования.
- Краткая характеристика симплексного м-метода линейного программирования. Геометрическая интерпретация симплексного метода.
- Критерий оптимальности. Возможность решения задач с различными целевыми функциями в одной и той же области допустимых решений. Случай многокритериальных задач.
- Линейная и нелинейная регрессия
- Матрица (математическая модель) открытой транспортной задачи. Условный потребитель (получатель). Характеристика задач, решаемых этим методом.
- Множественная регрессия
- Моделирование одномерных временных рядов. Основные элементы временного ряда
- Моделирование сезонных и циклических колебаний. Аддитивная и мультипликативная модель временного ряда. Процесс построения модели.
- Общая формулировка задачи линейного программирования (злп). Каноническая форма злп.
- Приведение общей задачи линейного программирования к канонической форме
- Общая формулировка задачи линейного программирования (злп). Матричная форма записи.
- Описание матрицы модели «затраты-выпуск» на примере межотраслевого баланса. Уравнения баланса для потребляющих и производящих отраслей
- Определение и формулы для расчета сумм tss, rss и ess. Проверка общего качества уравнения регрессии на основе проверки значимости коэффициента детерминации r2.
- Определение и формула Истинный коэффициент детерминации модели зависимости случайной величины y от факторов X определяется следующим образом:
- Основные понятия эволюционно-симулятивной методологии.
- Общие сведения
- Основные теоремы двойственности и их экономическое содержание
- Основные теоремы теории равновесных случайных процессов
- Особые случаи симплексного метода.
- Оценка параметров линейной модели парной регрессии. Суть метода наименьших квадратов.
- Оценка спецификации модели. Проверка гипотез, относящихся к коэффициентам уравнения парной линейной регрессии.
- Понятие «временной ряд» и «анализ временного ряда».
- Понятие «корреляционный анализ»
- Понятие «модель временного ряда». Модели временных рядов
- Понятие «регрессия» и «регрессионный анализ».
- Понятие «эконометрическая модель». Предмет, цели и задачи эконометрики.
- Понятие двойственности в задаче линейного программирования.
- Понятие двойственности в задаче линейного программирования. Основные теоремы двойственности.
- Понятие критического пути в сетевой модели. Построение линейной диаграммы проекта.
- Понятие социально-экономического процесса. Общие закономерности социально-экономического развития (цикл «инновации-инвестиции»)
- Правила нахождения коэффициентов новой симплексной таблицы. Оценка оптимальности плана при решении задач на максимум и минимум целевой функции.
- Правила составления исходной матрицы и первого (опорного, базисного) плана симплексного м-метода линейного программирования.
- Предмет, цели и задачи эконометрики. Связь эконометрики с другими областями знаний. Типы выборочных данных в эконометрике.
- Преимущества и недостатки моделей, использующих коэффициенты прямых затрат, в сравнении с моделями, использующими коэффициенты полных затрат.
- Применение метода наименьших квадратов для регрессионного анализа.
- Принципы построения эконометрических моделей. Виды переменных эконометрических моделей.
- Прогнозирование по уравнению парной линейной регрессии. Точечный и интервальный прогнозы значений результативного признака.
- Прогнозирование по уравнению парной линейной регрессии. Точечный прогноз. Интервальные прогнозы для средних и индивидуальных значений результативного признака.
- Разложение временных рядов на компоненты
- Расчет опорного (базисного) плана транспортной задачи методом «северо-западного угла». Формулы расчета потенциалов занятых клеток и расчета оценок свободных клеток матрицы транспортной задачи.
- Симплексный м-метод линейного программирования. Симплекс-таблица. Правило прямоугольника.
- Симплекс-таблица. Получение первого опорного решения. Последовательность оптимизации симплекс методом.
- Способы формализации различных экономических и управленческих задач, заданных в содержательном виде. Задача о раскрое материалов.