Особые случаи симплексного метода.
Существуют следующие четыре особых случая, встречающихся при использовании симплекс-метода:
1. Вырожденность. В ходе выполнения симплекс-метода проверка условия допустимости может привести к неоднозначному выбору исключаемой переменной. В этом случае на следующей итерации одна или более базисных переменных примут нулевое значение. Тогда новое решение будет вырожденным.
В вырожденном решении нет никакой опасности, за исключением небольших теоретических неудобств, которые мы далее кратко обсудим. С практической точки зрения вырожденность объясняется тем, что в исходной задаче присутствует, по крайней мере, одно избыточное ограничение.
2. Альтернативные оптимальные решения. Когда прямая (если рассматривается двухмерная задача ЛП, в общем случае – гиперплоскость), представляющая целевую функцию, параллельна прямой (гиперплоскости), соответствующей связывающему неравенству (которое в точке оптимума выполняется как точное равенство), целевая функция принимает одно и то же оптимальное значение на некотором множестве точек границы области допустимых решений. Эти решения называются альтернативными оптимальными решениями.
На практике альтернативные оптимальные решения весьма полезны, поскольку позволяют сделать выбор среди множества решений без ухудшения значения целевой функции.
3. Неограниченные решения. В некоторых задачах ЛП значения переменных могут неограниченно возрастать без нарушения ограничений. Это говорит о том, что пространство допустимых решений не ограничено, по крайней мере, по одному направлению. В результате этого целевая функция может возрастать (задача максимизации) или убывать (задача минимизации) неограниченно.
Неограниченность решения задачи свидетельствует только об одном: модель разработана не достаточно корректно. Типичные ошибки, приводящие к построению таких моделей, заключается в том, что не учитываются ограничения, не являющиеся избыточными, и не точно оцениваются параметры (коэффициенты) ограничений.
Правило выявления неограниченности решения следующее. Если на какой-либо симплекс-итерации коэффициенты в ограничениях для какой-нибудь небазисной переменной будут неположительными, значит, пространство решений не ограничено в направлении возрастания этой переменной. Кроме того, если коэффициент этой переменной в z-строке отрицателен, когда рассматривается задача максимизации, или положителен в задаче минимизации, целевая функция также не ограничена
4. Отсутствие допустимых решений. Если ограничения задачи ЛП несовместны (т.е. они не могут выполняться одновременно), то задача не имеет допустимых решений. Такая ситуация не может возникнуть, если все неравенства, составляющие систему ограничений, имеют тип «<=» с неотрицательными правыми частями, так как в этом случае дополнительные переменные могут составить допустимое решение. Для других типов ограничений мы используем искусственные переменные. И хотя в оптимальном решении все искусственные переменные в силу штрафов равны нулю, такой исход возможен только тогда, когда задача имеет непустое пространство допустимых решений. В противном случае, в оптимальном решении будет присутствовать хотя бы одна положительная искусственная переменная.
С практической точки зрения отсутствие допустимых решений свидетельствует о том, что задача плохо сформулирована.
- Автокорреляционная функция, коррелограмма и выявление структуры временного ряда.
- Автокорреляция уровней временного ряда. Свойства коэффициента временной автокорреляции.
- Аналитическое выравнивание временного ряда. Ошибки спецификации при выборе вида тренда.
- Балансовый метод планирования. Области применения. Преимущества модели «затраты-выпуск».
- Временные параметры событий сетевых моделей: ранний срок, поздний срок, резерв времени. Критические события.
- Геометрическая интерпретация злп. Графическая интерпретация целевой функции. Особые случаи при графическом решении злп.
- Граф-аналитический метод решения злп. Геометрическая интерпретация и графическое решение злп.
- Коэффициент напряженности работы в сетевой модели. Пути снижения напряженности работ.
- Коэффициенты прямых и косвенных материальных затрат в матричных моделях баланса. Основные уравнения математической модели балансового метода планирования.
- Краткая характеристика симплексного м-метода линейного программирования. Геометрическая интерпретация симплексного метода.
- Критерий оптимальности. Возможность решения задач с различными целевыми функциями в одной и той же области допустимых решений. Случай многокритериальных задач.
- Линейная и нелинейная регрессия
- Матрица (математическая модель) открытой транспортной задачи. Условный потребитель (получатель). Характеристика задач, решаемых этим методом.
- Множественная регрессия
- Моделирование одномерных временных рядов. Основные элементы временного ряда
- Моделирование сезонных и циклических колебаний. Аддитивная и мультипликативная модель временного ряда. Процесс построения модели.
- Общая формулировка задачи линейного программирования (злп). Каноническая форма злп.
- Приведение общей задачи линейного программирования к канонической форме
- Общая формулировка задачи линейного программирования (злп). Матричная форма записи.
- Описание матрицы модели «затраты-выпуск» на примере межотраслевого баланса. Уравнения баланса для потребляющих и производящих отраслей
- Определение и формулы для расчета сумм tss, rss и ess. Проверка общего качества уравнения регрессии на основе проверки значимости коэффициента детерминации r2.
- Определение и формула Истинный коэффициент детерминации модели зависимости случайной величины y от факторов X определяется следующим образом:
- Основные понятия эволюционно-симулятивной методологии.
- Общие сведения
- Основные теоремы двойственности и их экономическое содержание
- Основные теоремы теории равновесных случайных процессов
- Особые случаи симплексного метода.
- Оценка параметров линейной модели парной регрессии. Суть метода наименьших квадратов.
- Оценка спецификации модели. Проверка гипотез, относящихся к коэффициентам уравнения парной линейной регрессии.
- Понятие «временной ряд» и «анализ временного ряда».
- Понятие «корреляционный анализ»
- Понятие «модель временного ряда». Модели временных рядов
- Понятие «регрессия» и «регрессионный анализ».
- Понятие «эконометрическая модель». Предмет, цели и задачи эконометрики.
- Понятие двойственности в задаче линейного программирования.
- Понятие двойственности в задаче линейного программирования. Основные теоремы двойственности.
- Понятие критического пути в сетевой модели. Построение линейной диаграммы проекта.
- Понятие социально-экономического процесса. Общие закономерности социально-экономического развития (цикл «инновации-инвестиции»)
- Правила нахождения коэффициентов новой симплексной таблицы. Оценка оптимальности плана при решении задач на максимум и минимум целевой функции.
- Правила составления исходной матрицы и первого (опорного, базисного) плана симплексного м-метода линейного программирования.
- Предмет, цели и задачи эконометрики. Связь эконометрики с другими областями знаний. Типы выборочных данных в эконометрике.
- Преимущества и недостатки моделей, использующих коэффициенты прямых затрат, в сравнении с моделями, использующими коэффициенты полных затрат.
- Применение метода наименьших квадратов для регрессионного анализа.
- Принципы построения эконометрических моделей. Виды переменных эконометрических моделей.
- Прогнозирование по уравнению парной линейной регрессии. Точечный и интервальный прогнозы значений результативного признака.
- Прогнозирование по уравнению парной линейной регрессии. Точечный прогноз. Интервальные прогнозы для средних и индивидуальных значений результативного признака.
- Разложение временных рядов на компоненты
- Расчет опорного (базисного) плана транспортной задачи методом «северо-западного угла». Формулы расчета потенциалов занятых клеток и расчета оценок свободных клеток матрицы транспортной задачи.
- Симплексный м-метод линейного программирования. Симплекс-таблица. Правило прямоугольника.
- Симплекс-таблица. Получение первого опорного решения. Последовательность оптимизации симплекс методом.
- Способы формализации различных экономических и управленческих задач, заданных в содержательном виде. Задача о раскрое материалов.