logo
теория

Прогнозирование по уравнению парной линейной регрессии. Точечный и интервальный прогнозы значений результативного признака.

Уравнение линейной регрессии применимо и для прогнозирования возможных ожидаемых значений результативного признака. При этом следует учесть, что перенос (экстраполяция) закономерности связи, измеренной в варьирующей совокупности, в статике на динамику не является, строго говоря, корректным и требует проверки условий допустимости такого решения, которое выходит за рамки статистики и может быть сделано только специалистом, хорошо знающим объект (систему) и возможности его развития.

Ограничением прогнозирования на основе уравнения линейной регрессии, тем более парного, служит условие стабильности или, по крайней мере, малой изменчивости других факторов и условий изучаемого процесса, не связанных с ними. Если резко изменится внешняя среда протекающего процесса, прежнее уравнение линейной регрессии результативного признака потеряет свое значение. Прогноз, полученный подстановкой в уравнение линейной регрессии ожидаемого значения фактора, называют точечным прогнозом.

Точечный прогноз результативной переменной у на базе линейной модели парной регрессии при заданном значении факторной переменной хm будет осуществляться по формуле:

ym=β01xm+εm.

Точечный прогноз результативной переменной ym с доверительной вероятностью γ или (1–а) попадает в интервал прогноза, определяемый как:

ym–t*ω(m)≤ ym≤ ym+t*ω(m),

Интервальные прогнозы строятся на основе точечных прогнозов. Доверительным интервалом называется такой интервал, относительно которого можно с заранее выбранной вероятностью утверждать, что он содержит значение прогнозируемого показателя. Ширина интервала зависит от качества модели, т.е. степени ее близости к фактическим данным, числа наблюдений, горизонта прогнозирования и выбранного пользователем уровня вероятности.

При построении доверительного интервала прогноза рассчитывается величина U(k), которая для линейной модели имеет вид: