logo search
теория

Прогнозирование по уравнению парной линейной регрессии. Точечный прогноз. Интервальные прогнозы для средних и индивидуальных значений результативного признака.

Важно заметить, что одна из задач эконометрического моделирования заключается в прогнозировании поведения исследуемого явления или процесса в будущем. В большинстве случаев данная задача решается на основе регрессионных моделей, с помощью кᴏᴛᴏᴩых можно спрогнозировать поведение результативной переменной в зависимости от поведения факторных переменных.

Точечный прогноз результативной переменной у на базе линейной модели парной регрессии при заданном значении факторной переменной хm будет осуществляться по формуле: ym=β01xm+εm.

Точечный прогноз результативной переменной ym с доверительной вероятностью γ или (1–а) попадает в интервал прогноза, определяемый как: ym–t*ω(m)≤ ym≤ ym+t*ω(m),

Интервальные прогнозы строятся на основе точечных прогнозов. Доверительным интервалом называется такой интервал, относительно которого можно с заранее выбранной вероятностью утверждать, что он содержит значение прогнозируемого показателя. Ширина интервала зависит от качества модели, т.е. степени ее близости к фактическим данным, числа наблюдений, горизонта прогнозирования и выбранного пользователем уровня вероятности.

При построении доверительного интервала прогноза рассчитывается величина U(k), которая для линейной модели имеет вид:

( чужие ответы: Регрессионные модели могут быть использованы для прогнозирования возможных ожидаемых значений зависимой переменной .Прогнозируемое значение переменной Yполучается при подстановке в уравнение регрессии ожидаемой величины фактора Х

Данный прогноз называется точечным. Значение независимой переменной х(прогн)не должно значительно отличаться от значений входящих в выборку, по которой вычеслено уравнение регрессии.

Вероятность реализации точечного прогноза теоретически равна нулю. Поэтому рассчитывается средняя ошибка, или доверительный интервал, прогноза с достаточно большой надежностью.

Доверительные интервалы зависят от:

Точечный прогноз по уравнению регрессии.

Если известно значение независимой переменной хр, то прогноз зависимой переменной осуществляется подстановкой этого значения в полученное эмпирическое уравнение регрессии .

Показателем точности прогноза служит его дисперсия (чем она меньше, тем точнее прогноз):

Подставив вместо её несмещённую оценку , получим выборочную исправленную дисперсию рассматриваемой случайной величины.

Очевидно, что чем больше объем выборки, тем точнее прогноз. При фиксированном объёме выборки прогноз тем точнее, чем больше вариация выборочных данных и чем ближе значение независимой переменной хр к среднему выборочному значению.

Интервальный прогноз среднего значения по уравнению регрессии.

Доверительный интервал для М(Y/X=xр) имеет вид:

Интервальный прогноз индивидуальных значений зависимой переменной. Интервал

определяет границы, за пределами которых могут оказаться не более 100α% точек наблюдений при Х=хр. Данный доверительный интервал шире доверительного интервала для условного математического ожидания.)