П.2 Соединения с повторениями
Опр: 4.2.1Перестановками с повторениями называются перестановки изnэлементов, в каждую из которых входитn1элементова,n2элементовb, …,nkэлементовl, гдеn=n1+n2+…+nk. Число перестановок с повторениями вычисляется по формуле:
Пример 4.2.1 Сколькими способами можно переставить буквы в слове “математика”.
Решение:В слове “математика” есть повторяющиеся буквы: “м” – 2 раза, “а” – 3 раза, “т” – 2 раза, “е” – 1 раз, “и” – 1 раз, “к” – 1 раз. Порядок расположения элементов имеет значение (это очевидно, так как если переставить местами 2 буквы, то получатся разные слова) и все элементы используются, следовательно, это перестановка с повторениями.
Таким образом, в слове “математика” можно переставить буквы 151200 способами.
Опр 4.2.2Сочетания изnэлементов, в каждое из которых входитmэлементов, причем один и тот же элемент может повторяться в каждом сочетании любое число раз, но не болееm, называются сочетаниями с повторениями. Число сочетаний с повторениями вычисляется по формуле:
Пример 4.2.2на почте продаются открытки 10 сортов. Сколько вариантов существует для покупки 12 открыток.
Решение:Порядок расположения элементов не имеет значения, следовательно, это сочетание. А так как открытки в наборе могут повторяться, то это сочетание с повторениями.
.
Таким образом, из 10 открыток можно выбрать набор из12 штук 293930 способами.
Опр 4.2.3 Размещениями с повторениями изnэлементов поkэлементов называются упорядоченные множества, каждое из которых содержитkнеобязательно различных элементов из данного множестваnэлементов. Число размещений с повторениями вычисляется по формуле:
Пример 4.2.3В стену здания вмонтированы 8 гнезд для флажков. В каждое гнездо вставляется либо голубой, либо красный флажок. Сколько различных случаев распределения флажков на здание.
Решение:Так как порядок расположения элементов важен и не все элементы используются в данном соединении, то это размещение. А так как всего 8 гнезд, а флажков 2 вида (голубой и красный), то они будут повторяться, т.е. это размещение с повторением.
Таким образом, существует 256 способов украсить здание с 8 гнездами флажками двух цветов.
- Математика и информатика Учебное пособие
- Содержание:
- §1. Математические предложения и доказательства.
- §2. Элементы теории множеств.
- П.2 Подмножество. Основные числовые множества.
- П.3 Операции над множествами.
- П.4 Диаграммы Эйлера-Венна.
- § 3. Декартово произведение множеств. Соответствия. Бинарные отношения и их свойства. Отображения.
- § 4. Элементы комбинаторики. Соединения без повторений и с повторениями. Правила суммы и произведения.
- П.1 Соединения без повторений
- П.2 Соединения с повторениями
- П.3. Правила суммы и произведения
- § 5. Элементы теории вероятностей. П.1 Классическое и статистическое определения вероятности.
- П.2 Сумма событий. Теорема сложения вероятностей.
- П.3 Произведение событий. Теорема умножения вероятностей.
- П.4 Формула полной вероятности. Формула Байесса. Формула Бернулли.
- Вопрос 2.Шкалы измерения
- Методы первичной статистической обработки результатов эксперимента
- Выборочное среднее
- Дисперсия
- § 9. Информация и информационные процессы п.1. Понятие об информации. Носители информации. Количественная мера информации. Кодирование информации
- П.2. Понятие о системах счисления. Системы счисления, применяемые в цифровых эвм
- Системы счисления, применяемые в цифровых эвм
- П.3. Перевод чисел из одной с.С. В другую
- П.4. Арифметика двоичных чисел
- Задачи для самостоятельной работы
- §11 Алгоритм и его свойства. Методика составления алгоритмов. П.1. Понятие алгоритма. Свойства алгоритмов. Способы задания алгоритмов.
- П.2.Типы алгоритмов.
- Следование
- Цикл – до(Рис. 58)
- Цикл с параметром(Рис. 59)
- П.3 Базовые алгоритмические структуры
- П.4.Основные этапы решения задач на эвм.