П.2 Подмножество. Основные числовые множества.
Опр.2.2.1 Множество В, состоящее из некоторых элементов данного множества А (и только из них), называется подмножеством (частью) этого множества. Иначе, если любой элемент множества В принадлежит также множеству А, то множество В называется подмножеством множества А.
Это записывается так: В А или АВ. Говорят, что «В – подмножество А» или «В содержится в А» или «А содержит В». Заметим, что m(В) m(А).
Если в множестве В найдется хотя бы один элемент, не принадлежащий множеству А, то В не является подмножеством множества А: ВА. Например, отрезок [а, b] не является подмножеством полуинтервала (а, b], т.к. а[а, b], но а(а, b].
Из опр.2.2.1 следует, что любое множество является подмножеством самого себя, т.е. справедливо утверждение АА. Полагают также, что пустое множество является подмножеством любого множества. Пустое множество не содержит ни одного элемента, а значит в нем нет элемента, не принадлежащего любому другому множеству.
Знак называется знаком включения. Отметим основные свойства отношения включения между множествами:
А для любого множества А;
АА для любого множества А (рефлексивность);
из того, что ВА не следует АВ (не симметричность);
если АВ и ВА, то А=В (антисимметричность);
если АВ и ВС, то АС (транзитивность).
Основные числовые множества:
N={1,2,3,4,…} – множество натуральных чисел;
Z={…,-4,-3,-2,-1,0,1,2,3,4,…} – множество целых чисел (содержит все натуральные числа и числа, им противоположные), NZ;
Q={x , где pZ, qN} – множество рациональных чисел (состоит из чисел, допускающих представление в виде дроби), NZQ;
R=(-∞;+∞) – множество действительных чисел, QR (кроме всех рациональных чисел, содержит иррациональные числа, содержащие в своей записи знаки радикалов: ).
Действительные числа изображаются точками координатной прямой (числовой оси). Координатная прямая – это всякая прямая (обычно горизонтальная), на которой указаны положительное направление, начало отсчета и единичный отрезок.
Таблица 1. Правила изображения числовых промежутков.
Название | Неравенство, определяющее множество | Обозначение | Изображение |
Отрезок от а до b (замкнутый промежуток) | а х b | [a;b] |
|
Интервал от а до b | а х b | (a;b) |
|
Полуинтервалы от а до b
| а х b
а х b | (a;b]
[a;b)
|
|
Числовой луч от а до +∞
| а х | [a;+∞) |
|
Открытый числовой луч от а до +∞ | а х | (a;+∞) |
|
Числовой луч от -∞ до а
| х а | (-∞; а] |
|
Открытый числовой луч от -∞ до а | х а | (-∞; а) |
|
- Математика и информатика Учебное пособие
- Содержание:
- §1. Математические предложения и доказательства.
- §2. Элементы теории множеств.
- П.2 Подмножество. Основные числовые множества.
- П.3 Операции над множествами.
- П.4 Диаграммы Эйлера-Венна.
- § 3. Декартово произведение множеств. Соответствия. Бинарные отношения и их свойства. Отображения.
- § 4. Элементы комбинаторики. Соединения без повторений и с повторениями. Правила суммы и произведения.
- П.1 Соединения без повторений
- П.2 Соединения с повторениями
- П.3. Правила суммы и произведения
- § 5. Элементы теории вероятностей. П.1 Классическое и статистическое определения вероятности.
- П.2 Сумма событий. Теорема сложения вероятностей.
- П.3 Произведение событий. Теорема умножения вероятностей.
- П.4 Формула полной вероятности. Формула Байесса. Формула Бернулли.
- Вопрос 2.Шкалы измерения
- Методы первичной статистической обработки результатов эксперимента
- Выборочное среднее
- Дисперсия
- § 9. Информация и информационные процессы п.1. Понятие об информации. Носители информации. Количественная мера информации. Кодирование информации
- П.2. Понятие о системах счисления. Системы счисления, применяемые в цифровых эвм
- Системы счисления, применяемые в цифровых эвм
- П.3. Перевод чисел из одной с.С. В другую
- П.4. Арифметика двоичных чисел
- Задачи для самостоятельной работы
- §11 Алгоритм и его свойства. Методика составления алгоритмов. П.1. Понятие алгоритма. Свойства алгоритмов. Способы задания алгоритмов.
- П.2.Типы алгоритмов.
- Следование
- Цикл – до(Рис. 58)
- Цикл с параметром(Рис. 59)
- П.3 Базовые алгоритмические структуры
- П.4.Основные этапы решения задач на эвм.