logo
шпоры к госу 2 группа (1)

47. Статистические методы исследования социально-экономических процессов

Статисти́ческие ме́тоды — методы анализа статистических данных. Выделяют методы прикладной статистики, которые могут применяться во всех областях научных исследований и любых отраслях народного хозяйства, и другие статистические методы, применимость которых ограничена той или иной сферой. Имеются в виду такие методы, как статистический приемочный контроль, статистическое регулирование технологических процессов, надежность и испытания, планирование экспериментов.

Классификация статистических методов.

Статистические методы анализа данных применяются практически во всех областях деятельности человека. Их используют всегда, когда необходимо получить и обосновать какие-либо суждения о группе (объектов или субъектов) с некоторой внутренней неоднородностью.

Целесообразно выделить три вида научной и прикладной деятельности в области статистических методов анализа данных (по степени специфичности методов, сопряженной с погруженностью в конкретные проблемы):

а) разработка и исследование методов общего назначения, без учета специфики области применения;

б) разработка и исследование статистических моделей реальных явлений и процессов в соответствии с потребностями той или иной области деятельности;

в) применение статистических методов и моделей для статистического анализа конкретных данных.

Роль корреляцонно-регрессионного анализа в обработке экономических данных.

Корреляционный анализ и регрессионный анализ являются смежными разделами математической статистики, и предназначаются для изучения по выборочным данным статистической зависимости ряда величин; некоторые из которых являются случайными. При статистической зависимости величины не связаны функционально, но как случайные величины заданы совместным распределением вероятностей. Исследование взаимосвязи случайных величин биржевых ставок приводит к теории корреляции, как разделу теории вероятностей и корреляционному анализу, как разделу математической статистики. Исследование зависимости случайных величин приводит к моделям регрессии и регрессионному анализу на базе выборочных данных. Теория вероятностей и математическая статистика представляют лишь инструмент для изучения статистической зависимости, но не ставят своей целью установление причинной связи. Представления и гипотезы о причинной связи должны быть привнесены из некоторой другой теории, которая позволяет содержательно объяснить изучаемое явление.

Корреляционный анализ является одним из методов статистического анализа взаимосвязи нескольких признаков.

Он определяется как метод, применяемый тогда, когда данные наблюдения можно считать случайными и выбранными из генеральной совокупности, распределенной по многомерному нормальному закону. Основная задача корреляционного анализа (являющаяся основной и в регрессионном анализе) состоит в оценке уравнения регрессии.

Корреляция – это статистическая зависимость между случайными величинами, не имеющими строго функционального характера, при которой изменение одной из случайных величин приводит к изменению математического ожидания другой.

1. Парная корреляция – связь между двумя признаками (результативным и факторным или двумя факторными).

2. Частная корреляция – зависимость между результативным и одним факторным признаками при фиксированном значении других факторных признаков.

3. Множественная корреляция – зависимость результативного и двух или более факторных признаков, включенных в исследование.

Корреляционный анализ имеет своей задачей количественное определение тесноты связи между двумя признаками (при парной связи) и между результативным признаком и множеством факторных признаков (при многофакторной связи).

Теснота связи количественно выражается величиной коэффициентов корреляции. Коэффициенты корреляции, представляя количественную характеристику тесноты связи между признаками, дают возможность определить «полезность» факторных признаков при построении уравнений множественной регрессии. Величина коэффициентов корреляции служит также оценкой соответствия уравнению регрессии выявленным причинно-следственным связям.

Первоначально исследования корреляции проводились в биологии, а позднее распространились и на другие области, в том числе на социально-экономическую. Одновременно с корреляцией начала использоваться и регрессия. Корреляция и регрессия тесно связаны между собой: первая оценивает силу (тесноту) статистической связи, вторая исследует ее форму. И корреляция, и регрессия служат для установления соотношений между явлениями и для определения наличия или отсутствия связи между ними.

Метод статистических группировок.

Метод группировок применяется для решения задач, возникающих в ходе научного статистического исследования:

- выделение социально-экономических типов явлений;

- изучение структуры явления и структурных сдвигов, происходящих в нем;

- изучение связей и зависимостей между отдельными при знаками явления.

Для решения этих задач применяют (соответственно) три вида группировок: типологические, структурные и аналитические (факторные).

Типологическая группировка решает задачу выявления и характеристики социально-экономических типов (частных подсовокупностей) путем разделения качественно разнородной совокупности на классы, социально-экономические типы, однородные группы единиц в соответствии с правилами научной группировки.

Структурной группировкой называется группировка, в которой происходит разделение выделенных с помощью типологической группировки типов явлений, однородных совокупностей на группы, характеризующие их структуру по какому-либо варьирующему признаку.

Аналитические (факторные) группировки, в частности, исследуют связи и зависимости между изучаемыми явлениями и их признаками. В основе аналитической группировки лежит факторный признак и каждая выделенная группа характеризуется средними значениями результативного признака. Так, группируя достаточно большое число рабочих по факторному признаку x – квалификации (разряду) с указанием их заработной платы, можно заметить прямую зависимость результативного признака у – средней месячной заработной платы рабочих от квалификации: чем выше квалификация, тем выше и средняя месячная зарплата (хотя у отдельных рабочих с более высоким разрядом она может быть ниже).

Изменение социально-экономических явлений во времени изучается статистикой методом построения и анализа динамических рядов. Ряды динамики - это значения статистических показателей, которые представлены в определенной хронологической последовательности.

Каждый динамический ряд содержит две составляющие:

1) показатели периодов времени (годы, кварталы, месяцы, дни или даты);

2) показатели, характеризующие исследуемый объект за временные периоды или на соответствующие даты, которые называют уровнями ряда.

Уровни ряда выражаются как абсолютными, так и средними или относительными величинами. В зависимости от характера показателей строят динамические ряды абсолютных, относительных и средних величин. Ряды динамики из относительных и средних величин строят на основе производных рядов абсолютных величин. Различают интервальные и моментные ряды динамики.

Динамический интервальный ряд содержит значения показателей за определенные периоды времени. В интервальном ряду уровни можно суммировать, получая объем явления за более длительный период, или так называемые накопленные итоги.

Динамический моментный ряд отражает значения показателей на определенный момент времени (дату времени). В моментных рядах исследователя может интересовать только разность явлений, отражающая изменение уровня ряда между определенными датами, поскольку сумма уровней здесь не имеет реального содержания. Накопленные итоги здесь не рассчитываются.

Важнейшим условием правильного построения динамических рядов является сопоставимость уровней рядов, относящихся к различным периодам. Уровни должны быть представлены в однородных величинах, должна иметь место одинаковая полнота охвата различных частей явления.

Для того, чтобы избежать искажения реальной динамики, в статистическом исследовании проводятся предварительные расчеты (смыкание рядов динамики), которые предшествуют статистическому анализу динамических рядов. Под смыканием рядов динамики понимается объединение в один ряд двух и более рядов, уровни которых рассчитаны по разной методологии или не соответствуют территориальным границам и т.д. Смыкание рядов динамики может предполагать также приведение абсолютных уровней рядов динамики к общему основанию, что нивелирует несопоставимость уровней рядов динамики.

Индексный метод.

Индекс – это относительная величина, показывающая, во сколько раз уровень изучаемого явления в данных условиях отличается от уровня того же явления в других условиях. Различие условий может проявляться во времени (индексы динамики), в пространстве (территориальные индексы) и в выборе в качестве базы сравнения какого-либо условного уровня.

По охвату элементов совокупности (ее объектов, единиц и их признаков) различают индексы индивидуальные (элементарные) и сводные (сложные), которые делятся на общие и групповые.

Индивидуальные индексы – это результат сравнения двух показателей, относящихся к одному объекту, например сравнение цен какого-либо товара, объема его реализации и т. д. В статистико-экономическом анализе деятельности предприятий и отраслей широко применяются индивидуальные индексы качественных и количественных показателей,например, индекс цен.

Сводный индекс характеризует соотношение уровней нескольких элементов совокупности (например, изменение объема выпуска нескольких видов продукции, имеющих различную натурально-вещественную форму, или изменение уровня производительности труда при производстве нескольких видов продукции). Если изучаемая совокупность состоит из нескольких групп, то сводные индексы, каждый из которых характеризует изменение уровней отдельной группы единиц, являются групповыми (субиндексами), а сводный индекс, охватывающий всю совокупность единиц, – общим (тотальным) индексом. Сводные индексы выражают соотношение сложных социально-экономических явлений и состоят из двух частей:

1) из индексируемой величины;

2) из соизмерителя, который называется весом.

Графический метод.

Статистический график представляет собой чертеж, на котором при помощи условных геометрических фигур (линий, точек или других символических знаков) изображаются статистической совокупности.

По способу построения статистические графики подразделяются на диаграммы, картограммы и картодиаграммы.

Диаграмма представляет чертеж, на котором статистическая информация изображается посредством геометрических фигур или символических знаков. В статистике коммерческой деятельности на рынке товаров и услуг наибольшее применение имеют линейные диаграммы. Для их построения обычно применяется система прямоугольных координат. На оси абсцисс откладываются варианты изучаемого показателя (или показания времени), а по оси ординат-величина изучаемого показателя. По отметкам (точкам) обеих осей координат определяется положение каждого уровня на поле графика.

Последовательно соединяя точки отрезками линий, получают эмпирическую линию графика, так называемую статистическую кривую. По виду этой линии можно судить о характере развития изучаемого явления в пространстве или во времени.

Другим также часто используемым в статистике коммерческой деятельности методом наглядного изображения статистической информации являются столбиковые диаграммы.

При построении столбиковых диаграмм используется, как и в линейных графиках, прямоугольная система координат. При этом каждое значение изучаемого показателя изображается в виде вертикального столбика. По оси абсцисс размещается основание столбиков. Их ширина может быть произвольной, но обязательно одинаковой для каждого столбика. Высота столбиков (в соответствии с принятым по оси ординат масштабом) должна строго соответствовать изображаемым данным.

Картограмма - это схематическая (контурная) карта, или план местности, на которой отдельные территории в зависимости от величины изображаемого показателя обозначаются с помощью графических символов (штриховки, расцветки, точек). В свою очередь, картограммы подразделяются на фоновые и точечные.

В фоновых картограммах территории с различной величиной изучаемого показателя имеют различную штриховку. Иногда в качестве условных знаков используются различные цвета. При этом каждому значению показателя соответствует определенный оттенок раскраски или вид штриховки. Примером этого вида картограмм являются карты плотности населения, рождаемости, смертности.

В точечных картограммах в качестве графического знака используются точки одинакового размера, размещенные в пределах определенных территориальных единиц. Каждая точка условно принимается за определенную величину показателя. Количественная характеристика отдельных территорий по размеру изучаемого показателя достигается при помощи соответствующего количества точек.

Картодиаграмма представляет собой сочетание контурной карты (плана) местности с диаграммой. В отличие от диаграммы используемые геометрические символы (столбики, круги и др.) на картодиаграмме располагают не в один, а размещают по всей карте.

В зависимости от характера решаемых задач статистические графики классифицируются по их целевому применению в статистическом изучении коммерческой деятельности на рынке товаров и услуг.

Различают следующие основные виды статистических графиков: рядов распределения; структуры статистической совокупности; рядов динамики; показателей связи; показателей выполнения заданий.