logo
Информационные технологии для менеджеров - Грабауров В

1.3.3. Переработка руды данных (DataMining)

Ранее идея "складирования" данных - идея выбора данных компании из операционных систем и помещения их в отдельной базе данных представлялась так, чтобы пользователи могли иметь доступ к ним и анализировать данные без опасности для операционных систем. Аргументом было то, что создание и обслуживание базы данных является операционной системой, поэтому база данных поддерживает всю организацию, создавая данные, доступные каждому, в то время как анализ данных выполняется для отдельного менеджера или маленькой группы менеджеров, и, следовательно, это система поддержки управления. Сейчас анализ данных производится в базе, потому что системы поддержки принятия решений, описанные в предыдущем разделе, часто извлекают данные, в которых они нуждаются, непосредственно из баз данных организаций.

"Добыча данных" (Data Mining) использует ряд технологий (типа деревьев решений и нейронных сетей), чтобы искать или "добывать" маленькие "самородки" информации из крупных объемов данных, запасенных в базе данных организации. Добыча данных, которая иногда рассматривается как вспомогательный аппарат систем поддержки принятия решений, является особенно полезной, когда организация имеет большие объемы данных в базе. Понятие "добыча данных" не ново, хотя название стало популярным только в конце 1990 г. По крайней мере в течение двух десятилетий много больших организаций использовали внутренних или внешних аналитиков, часто называемых специалистами управления, пробуя распознавать тренды или создавать модели в больших массивах данных, используя методы статистики, математики и искусственного интеллекта. С развитием крупномасштабных баз данных и недорогих мощных процессоров возобновился интерес к тому, что названо в последние годы "добычей данных".

Наряду с возобновлением интереса появился ряд высокопроизводительных и относительно легких в использовании пакетов программ, добывающих коммерческие данные.

Какие методы решения или подходы используются при "добыче данных"? Фирма "KnowledgeSeeker" использует только одну технологию -дерево решений. Это структура в виде дерева, полученная из данных, чтобы представить наборы решений, приводящих к различным результатам. Когда создан новый набор решений в виде информации относительно частного покупателя, дерево решений предсказывает результат. Нейронные сети, область искусственного интеллекта, которые будут обсуждаться позже в этой главе, включены в пакеты программ Marksman, Intelligent Miner и Darwin (последние два также используют дерево решений). Другие популярные технологии включают правила предположений, извлечение из правил "если, то", основанные на статистическом значении; сортировку записей, основанных на наиболее близких им в базе данных; генетические алгоритмы, т.е. методы оптимизации, основанные на концепциях генетической комбинации, мутации и естественного выбора.

Конечно, менеджеру более важно то, что может быть выполнено с "добычей данных", чем использованные в технологии решения. Ниже даны типичные приложения обработки данных. Для бизнеса любого вида эти приложения хороши, если смогут увеличить прибыль организации. Большинство этих приложений сосредоточивается на извлечении ценной информации для клиентов.